
QUANTUM ARCHITECTURES AND COMPUTATION 

Language-Integrated Quantum Operations (LIQ𝑈𝑖|⟩) Simulator 
User's Manual 

LIQ𝑈𝑖|⟩        User’s 
Manual



 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 

Q U A N T U M  A R C H I T E C T U R E S  A N D  C O M P U T A T I O N  

LIQ𝑼𝒊|⟩ Users Manual 

V3.5 20160113 

B Y  D A V E  W E C K E R  

 

 

 

Copyright  2015 by Microsoft Corporation 
One Microsoft Way 

Redmond, WA 98052-6399 
Phone (425) 882-8080 • Fax (425) 706-7329 



 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 

Table of Contents 

Table of Contents ............................................................................. 2 

List of Figures ................................................................................. 3 

List of Examples .............................................................................. 4 

Equations ........................................................................................ 6 

Introduction ..................................................................................... 7 

Suggested References ............................................................................. 9 

Obtaining the Software ........................................................................... 10 

Concepts and Data Types ............................................................. 11 

Basic Operation ............................................................................ 15 

Creating a script ...................................................................................... 17 

Advanced Topics .................................................................................... 25 

Serious Coding ............................................................................. 30 

Data Types .............................................................................................. 31 

Built-in Gates .......................................................................................... 35 

Gate and Qubit Operators ...................................................................... 38 

Extending the Simulator ................................................................ 40 

Custom Gates ......................................................................................... 40 

Rendering ............................................................................................... 46 

Circuit Manipulation....................................................................... 51 

QECC: Quantum Error Correction Codes............................................... 54 

Stabilizers ............................................................................................... 60 

Advanced Noise Models ............................................................... 66 

Full Example ........................................................................................... 67 

Amplitude Damping................................................................................. 70 

Noise + QECC ........................................................................................ 71 

Hamiltonian Mode ......................................................................... 74 

Spin-Glass simulation ............................................................................. 74 

Fermionic simulation ............................................................................... 78 

Quantum Chemistry ................................................................................ 82 

Quantum Chemistry Options .................................................................. 83 

Quantum Chemistry Output .................................................................... 87 

Built-in Samples ............................................................................ 92 

Index ............................................................................................. 97 

 



 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 

List of Figures 

 
Figure 1: The LIQU𝑖|⟩ Platform Architecture ................................................................................. 8 
Figure 2: Bloch Sphere representation of a Qubit ......................................................................... 12 
Figure 3: Entangle2(10) circuit drawing (HTML and LaTeX) ..................................................... 23 
Figure 4: Basic Teleport Circuit ........................................................................................................ 25 
Figure 5: High level Teleport QECC circuit (LaTeX version) ..................................................... 26 
Figure 6: Low level Teleport QECC circuit (HTML version) ..................................................... 27 
Figure 7: Error Insertion .................................................................................................................... 28 
Figure 8: Liquid project ...................................................................................................................... 30 
Figure 9: Main.fs .................................................................................................................................. 31 
Figure 10: Sample drawing from LiquidTikX.tex ........................................................................... 47 
Figure 11: Rendering of a complex circuit (high level).................................................................. 49 
Figure 12: Rendering of a complex circuit (low level) ................................................................... 50 
Figure 13: Steane7 Prep Circuit ......................................................................................................... 56 
Figure 14: Steane7 Syndrome Circuit ............................................................................................... 58 
Figure 15: Circuit for Noise Analysis ............................................................................................... 67 
Figure 16: Output from Noise run ................................................................................................... 69 
Figure 17: Typical Annealing Schedule ............................................................................................ 75 
Figure 18: 12 Qubit ferromagnetic chain......................................................................................... 77 
Figure 19: 12 Qubit ferromagnetic chain (grown) ......................................................................... 78 
Figure 20: Molecular Hydrogen Energy Spectra ............................................................................ 81 
Figure 21: Water Energy vs. Bond Length and Angle ................................................................... 81 
Figure 22: Output from QLSA sample ............................................................................................ 94 

 

file:///E:/depot/QuArC/Projects/Liquid/Docs/Help/LIQUiD.docx%23_Toc435010831


 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 

List of Examples 

Example 1: Command Line Syntax .................................................................................................. 16 
Example 2: Command line function execution .............................................................................. 16 
Example 3: UserSample - Extending the simulator ....................................................................... 17 
Example 4: Script Header .................................................................................................................. 17 
Example 5: User script module ......................................................................................................... 18 
Example 6: Entanglement circuit ...................................................................................................... 19 
Example 7: Running Entangle1 ........................................................................................................ 20 
Example 8: Entangle1 running from a script .................................................................................. 20 
Example 9: Entangle1 from a pre-built DLL ................................................................................. 20 
Example 10: Single Entanglement circuit ........................................................................................ 21 
Example 11: Circuit Compilation and running ............................................................................... 21 
Example 12: Entangle1 with optimization run times .................................................................... 21 
Example 13: Dump of Teleport Circuit .......................................................................................... 21 
Example 14: Dump of Entangle2(2) Circuit ................................................................................... 22 
Example 15: Optimized Entanglement circuit ............................................................................... 22 
Example 16: Rendering a circuit ....................................................................................................... 22 
Example 17: Sample numbers to factor ........................................................................................... 24 
Example 18: Factoring 65 with Shor's algorithm ........................................................................... 24 
Example 19: Teleport circuit definitions ......................................................................................... 25 
Example 20: Mapping a Logical to a Physical circuit .................................................................... 26 
Example 21: Injecting errors for QECC ......................................................................................... 27 
Example 22: Running a Stabilizer simulation ................................................................................. 28 
Example 23: Obtaining QECC results ............................................................................................. 29 
Example 24: Output of Stabilizer run .............................................................................................. 29 
Example 25: UserSample execution ................................................................................................. 31 
Example 26: Starting Teleport in fully interactive mode .............................................................. 31 
Example 27: Creation of a Ket from fsi .......................................................................................... 32 
Example 28: Obtain Qubits from state............................................................................................ 32 
Example 29: Run teleport in fsi ........................................................................................................ 32 
Example 30: Printing out Qubit values ............................................................................................ 33 
Example 31: Teleport with an interesting initial state ................................................................... 33 
Example 32: Results from non-trivial teleport ............................................................................... 33 
Example 33: Circuit data structure ................................................................................................... 34 
Example 34: Creating teleport as a new Gate ................................................................................. 34 
Example 35: Creating a simple gate .................................................................................................. 35 
Example 36: Map with arguments operator .................................................................................... 38 
Example 37: Build a Qubit list operator .......................................................................................... 39 
Example 38: Gate constructor .......................................................................................................... 40 
Example 39: CNOT Gate implementation ..................................................................................... 42 
Example 40: Measurement Gate definition .................................................................................... 43 
Example 41: Reset Gate definition ................................................................................................... 43 
Example 42: Restore Gate definition ............................................................................................... 43 
Example 43: Adjoint Gate defintion ................................................................................................ 44 
Example 44: Control Gate definition ............................................................................................... 44 



 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 

Example 45: Native Gate definition ................................................................................................. 45 
Example 46: Binary Control Gate definition .................................................................................. 45 
Example 47: Wrap Gate Implementation ....................................................................................... 46 
Example 48: CNOT Render instructions ........................................................................................ 48 
Example 49: Rendering Wrap gates ................................................................................................ 49 
Example 50: Compiling a Circuit ...................................................................................................... 51 
Example 51: Steane7 constructor definition ................................................................................... 55 
Example 52: Logical values for Steane7 .......................................................................................... 55 
Example 53: Steane7 preparation Gate ............................................................................................ 56 
Example 54: Fix a detected error in Steane7................................................................................... 57 
Example 55: Full syndrome Gate for Steane7 ................................................................................ 58 
Example 56: Steane7 override definitions ....................................................................................... 58 
Example 57: Transverse gate dictionary .......................................................................................... 59 
Example 58: Default Gate replacement function .......................................................................... 59 
Example 59: Decode implementation for Steane7 ........................................................................ 60 
Example 60: Teleport of |1⟩ with final measurement ................................................................... 61 
Example 61: Running the tele1 function ......................................................................................... 61 
Example 62: tele1 result ..................................................................................................................... 61 
Example 63: Stabilizer simulation of tele1 ...................................................................................... 61 
Example 64: Final Stabilizer tableau ................................................................................................. 62 
Example 65: Gaussian Stabilizer tableau ......................................................................................... 62 
Example 66: QECC teleport Stabilizer tableau .............................................................................. 63 
Example 67: Running teleport with QECC under a Stabilzer simulation .................................. 63 
Example 68: Decoding QECC output ............................................................................................. 64 
Example 69: Command line QECC test with Stabilizers ............................................................. 64 
Example 70: Create a noise model ................................................................................................... 67 
Example 71: Noise options ................................................................................................................ 68 
Example 72: Running the noise model ............................................................................................ 68 
Example 73: Output from noise run ................................................................................................ 69 
Example 74: Noise final summary .................................................................................................... 70 
Example 75: Advanced Noise plus QECC ..................................................................................... 72 
Example 76; New noise techniques .................................................................................................. 72 
Example 77: Spin constructor (1) ..................................................................................................... 75 
Example 78:  Spin Constructor (2) ................................................................................................... 75 
Example 79: Ferromagnetic script .................................................................................................... 76 
Example 80: Output from Ferromagnetic run ............................................................................... 77 
Example 81: H2 Fermoinic dictionary definition........................................................................... 79 
Example 82: Solution for H2 molecule ........................................................................................... 80 
Example 83: Calling the __Chem function ..................................................................................... 82 
Example 84: Running your own molecule ...................................................................................... 83 
Example 85: H2O Term Expectations ............................................................................................ 86 
Example 86: H2O log, parameters ................................................................................................... 87 
Example 87 H2O log, loaded terms ................................................................................................. 87 
Example 88: H2O log, sample term dump ..................................................................................... 88 
Example 89: H2O log, gate statistics ............................................................................................... 89 
Example 90: H2O log, Phase Estimation ........................................................................................ 89 
Example 91: H2O log, final result .................................................................................................... 90 
Example 92: QuAM: Storing key value pairs .................................................................................. 94 
Example 93: QuAM: Searching for a key ........................................................................................ 95 



 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 

Example 94: Spin Glass couplings .................................................................................................... 95 
Example 95: TSP optimizatoin result .............................................................................................. 96 
Example 96: TSP Final Route ........................................................................................................... 96 
 

Equations 

 
Equation 1: State Definition .............................................................................................................. 11 
Equation 2: Qubit State ...................................................................................................................... 11 
Equation 3: Qubit as angles on the Bloch sphere .......................................................................... 12 
Equation 4: Operations ...................................................................................................................... 13 
Equation 5: Amplitude Damping Channel ...................................................................................... 70 
Equation 6: Krauss operators ............................................................................................................ 70 
Equation 7: Output state .................................................................................................................... 71 
Equation 8; Two Qubit Amplitude Damping ................................................................................ 71 
Equation 9: Adiabatic Hamiltonian .................................................................................................. 74 
Equation 10: Fermionic Hamiltonian .............................................................................................. 78 



I N T R O D U C T I O N  

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

7 

Introduction 

What is LIQ𝑈𝑖|⟩?  

IQ𝑈𝑖|⟩ is a simulation platform to aid in the exploration of quantum computation. 
LIQ𝑈𝑖|⟩ stands for “Language-Integrated Quantum Operations”.  A quantum 

operation is usually referred to as a unitary operator (𝑈) applied to a column state 

vector (also known as a ket: | ⋅⟩ ). The “𝑖” is just a constant scaling factor, hence 
the acronym. 

Currently, there are three classes of simulators built into the system representing different 
levels of abstraction: 

1. Physical Modeling: This is the Hamiltonian simulator which attempts to model 
some of the actual physics in a quantum system. It differs from the other simulators 
in that it has the concept of the time it takes for an operation to be performed 
(since it is numerically solving a differential equation) and can only operate on a 
small number of qubits (around 30). It is also (by its very nature) slow. 

2. Universal Modeling: This is the most flexible of the simulators. It allows a wide 
range of operations to be performed (including ones defined by the user). It can 
handle millions of operations (gates) to be executed, is highly optimized for parallel 
execution and is highly efficient in memory usage. Its main limitation is the number 
of qubits (~30) that can be entangled at one time. 

3. Stabilizer Modeling: This simulator has the virtue of allowing large circuits 
(millions of operations) on massive numbers of qubits (tens of thousands). The 
main limitation is the types of gates which may be included in the circuit. They are 
fixed in the system and come from the “stabilizer” class (e.g., Clifford group). This 
limits the usefulness of the types of algorithms that can be implemented and tested. 
However, it does allow the design and test of Quantum Error Correction Codes 
(QECC) which requires large numbers of qubits per logical qubits. 

Simulations can be accomplished in several ways: 

Chapter 

1 

L 



I N T R O D U C T I O N  

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

8 

 

1. Test mode: Several built-in tests of the system can be invoked from the command 
line and are useful demonstrations.  

2. Script mode: The system can be run directly from an F# text script (.fsx file). This 
allows the simulator to be operated by simply running the executable (no separate 
language compilation required). The entire simulator is available from this mode, 
but interactive debugging is difficult. Script mode allows users to experiment (with 
fast turn-around time) as well as being able to “kick the tires” without having to 
install a complete development environment. 

3. Function mode:  This is the normal development mode. It requires a compilation 
environment (e.g., Visual Studio) and the use of a .Net language (typically F#). The 
user has the full range of APIs at their disposal and can extend the environment in 
many ways as well as building their own complete applications. 

4. Circuit mode: Function mode can be compiled into a circuit data structure that is 
extremely general. This data structure can be manipulated by the user, run through 
built-in optimizers, have quantum error correction added, rendered as drawings, 
exported for use in other environments and may be run directly by all the 
simulation engines. 

The entire architecture is summarized in Figure 1 . Here are each of the major sections: 

 

 

Figure 1: The LIQU𝑖|⟩ Platform Architecture 



I N T R O D U C T I O N  

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

9 

Suggested References 

References cited throughout this document and generally useful to have 
around (in any case). 

his manual will not be providing a background in either quantum computation or 
functional programming. The author suggests the following as good sources of 
information: 

1. Quantum Computation and Quantum Information: This book by Michael 
Nielsen and Isaac Chuang is an invaluable reference source and I encourage you to 
obtain a copy. Most of the subjects discussed in the rest of this manual are fully 
covered in this reference. 

2. Programming F#: A comprehensive guide for writing simple code to solve 
complex problems: This book by Chris Smith is an excellent introductory text 
into functional programming and F# in particular. If you’re serious about 

developing your own simulations with LIQ𝑈𝑖|⟩ I would pick up a copy of either 
this book, or the following one. 

3. Expert F# 2.0: This book by Don Syme, Adam Granicz and Antonio Cisternino 
is the book on F# that I use more than any other. It is available as an eBook as 
well. 

4. The F# language reference can be found on MSDN (the Microsoft Developer 
Network) web site at: 

http://msdn.microsoft.com/en-us/library/dd233181.aspx 

While the full language reference is maintained at: 

http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/manual/spec.html  

5. Simulation of Electronic Structure Hamiltonians Using Quantum 
Computers: This paper by Whitfield, Biamonte and Aspuru-Guzik gives a good 
background for the fermionic section of the Hamiltonian simulator 
(http://arxiv.org/abs/1001.3855 ). 

6. More recent quantum chemistry papers (utilizing LIQ𝑈𝑖|⟩) include: 

a. Gate count estimates for performing quantum chemistry on small 
quantum computers http://arxiv.org/abs/1312.1695  

T 

http://msdn.microsoft.com/en-us/library/dd233181.aspx
http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/manual/spec.html
http://arxiv.org/abs/1001.3855
http://arxiv.org/abs/1312.1695


I N T R O D U C T I O N  

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

10 

b. Improving Quantum Algorithms for Quantum Chemistry 
http://arxiv.org/abs/1403.1539  

c. The Trotter Step Size Required for Accurate Quantum Simulation 
of Quantum Chemistry http://arxiv.org/abs/1406.4920  

d. Chemical Basis of Trotter-Suzuki Errors in Quantum Chemistry 
Simulation http://arxiv.org/abs/1410.8159  

7. LIQUi|>: A Software Design Architecture and Domain-Specific 
Language for Quantum Computing http://arxiv.org/abs/1402.4467 

8. Additional information about the Microsoft Quantum Architectures and 
Computation group may be found at: http://research.microsoft.com/QuArC 
along with the LIQUi|> project page at: http://research.microsoft.com/en-
us/projects/liquid/   

Obtaining the Software 

How to kick the tires 

he first place to visit is: 

http://github.com/msr-quarc/Liquid  

This site explains how to obtain LIQ𝑈𝑖|⟩. The software may be used to model quantum 
systems and algorithms as described above in any of the three supported modes. In 
addition, the system can be extended in many ways, including adding user defined gates 
(unitary operators) and custom quantum error correcting codes.  

Updates, news and discussions may also be found at the same location. News will also be 
published to the liquid-news email list; you can sign up for the list by sending an email to 
LISTSERV@lists.research.microsoft.com with a one-line body reading: 

SUB Liquid-news FirstName LastName 

replacing FirstName and LastName with your first and last names. 

If you prefer to remain anonymous, you may instead send an email containing: 

SUB Liquid-news anonymous

T 

http://arxiv.org/abs/1403.1539
http://arxiv.org/abs/1406.4920
http://arxiv.org/abs/1410.8159
http://arxiv.org/abs/1402.4467
http://research.microsoft.com/QuArC
http://research.microsoft.com/en-us/projects/liquid/
http://research.microsoft.com/en-us/projects/liquid/
http://github.com/msr-quarc/Liquid


C O N C E P T S  A N D  D A T A  T Y P E S  

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

11 

Concepts and Data Types 

The fundamental pieces of  LIQ𝑈𝑖|⟩  

his user’s manual will not attempt to teach either Quantum Mechanics or 
Quantum Computation (there are a plethora of sources available). However, we 
need to have some fundamental agreement on terms used in the sections that 
follow and a basic understanding of the actual definitions shared inside of the 

simulator. We will start at the bottom and work our way up. 

The basic data type is the Bit. Closely related to the classical bit, our 
data type contains the usual states of One and Zero but adds a new 

state Unknown. At most times, quantum systems do not admit to an exact value until we 
measure them. For this reason, a bit may return the value Unknown while it is inside of a 
quantum computation and has not been viewed externally as of yet.  

Quantum values are represented as Qubits. The qubit is defined as 
a pair of complex vectors pointing to a spot on a unit sphere (see 
Figure 2). Traditionally, a qubit pointing directly up (positive on the 

𝜎𝑧 axis) is denoted as the column vector |0⟩ and the vector pointing down is known as |1⟩. 
When measured, these become the Bits Zero and One respectively. Another way to think 
of this is directly with matrices where: 

|0⟩ = [
1 + 0𝑖
0 + 0𝑖

] = [
1
0
]   𝑎𝑛𝑑  |1⟩ = [

0 + 0𝑖
1 + 0𝑖 

] = [
0
1
]   

Equation 1: State Definition 

Any qubit may be viewed as a linear combination of these two vectors, so typically we will 
refer to the state of a single qubit as determined by two complex values a and b where: 

|Ψ⟩ = 𝑎|0⟩ + 𝑏|1⟩ = [
𝑎
𝑏
]    

Equation 2: Qubit State 

Chapter 

2 

T 
 Bit binary values used 

inside the simulator. 

Qubit quantum value that 

represents an entity that may 
be measured as a Bit. 



C O N C E P T S  A N D  D A T A  T Y P E S  

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

12 

Qubits will auto-normalize any states that are handed to them, so that |𝑎|2 + |𝑏|2 = 1. 
Another way to view all of this is that a squared is the probability of measuring the qubit as 
Zero and b squared is the probability of measuring the qubit as One.  

 

Figure 2: Bloch Sphere representation of a Qubit 

One other useful way of interpreting the state of a qubit is by the angles of the vectors, in 
this case: 

𝐚 = cos (
𝜃

2
) , 𝒃 = 𝑒𝑖𝜙 sin(

𝜃

2
)

(𝑥, 𝑦, 𝑧) = (𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙, 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙, 𝑐𝑜𝑠𝜃)
      

Equation 3: Qubit as angles on the Bloch sphere 

So far, we’ve seen what a single Qubit looks like, now we wish to 

combine them. In LIQ𝑈𝑖|⟩, this is known as a Ket (reference to a 

column vector in Dirac notation) and will always be 2𝑛 in length, where n is the number 
of qubits in the state. Of course, this number grows very rapidly with the number of qubits 
and the simulator does everything it can to keep from actually materializing the entire vector 
unless it needs to (e.g., when the qubits are fully entangled). This limits most of the 
simulation to ~30 qubits (1 billion states = 1 billion double precision floating point complex 
numbers = 17GB) which is the most we can fit on a 32GB machine and still perform 
simulations. The exception to this rule is the Stabilizer simulation engine (which will be 
discussed in its own chapter). 

In LIQ𝑈𝑖|⟩, every Qubit must belong to a single Ket and any Qubit can be queried to ask 
what Ket it belongs to (hence, one only needs to pass qubits around). 

 Ket Complete state of a 

quantum system 



C O N C E P T S  A N D  D A T A  T Y P E S  

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

13 

To perform operations on Kets we define Gates. A Gate may 
simply represent a unitary matrix that defines the operation (e.g., 

Hadamard, X, CNOT…), a non-unitary operation (e.g., Measurement and Reanimation) 
or a higher level concept (composite gates, binary controlled gates, extension gates (e.g., 
adjoint operator), Native and Label (UI support)). In addition to the actual operation, gates 
may define Names, Arity, Help and Rendering information for Circuit drawing). All of this 
will be described in detail in the section on user defined Gates. 

Gates are merely data structures. When they’re wrapped in F# 
functions, they become operators that can apply the Gate to a set of 

Qubits. Inside of LIQ𝑈𝑖|⟩, all Gates are exposed as Operations and 
user defined gates are wrapped in the same way. However, any F# function may be viewed 
as an Operation, so this is not really a new data type, it’s just the signature of any function 
that takes in Qubits and doesn’t return a value (since the Ket is altered by the operation 
performed. Logically, you can view this as: 

|Ψ2⟩ = 𝑈|Ψ1⟩

Equation 4: Operations 

Where U is the operation being performed on the state at time 1 resulting in a new state at 
time 2. Details will follow in the programming section, but if you wanted to apply a 
Hadamard gate on the first Qubit in a list of qubits, it would look like this: 

H qs 
 

This is why the system is called “Language Integrated”. Once we reach the level of 
operations, everything is completely embedded in the host language (in this case F#). The 
other benefit of this type of integration is that depending on the Ket that the qs parameter 
belongs to this one line will do any of three things: 

1. Apply the Gate and update the Ket containing the Qubits 

2. Return the Gate structure that H refers to (for use in higher level functions) 

3. Build a Circuit that contains the Gate (for optimizations and re-writing) 

One of the goals of LIQ𝑈𝑖|⟩ is to provide post-processing of 
quantum algorithms for various reasons: drawing, parallelizing, 

substitution (some gates will not be available in target physical systems), optimization, 
export and re-execution to name but a few. The Circuit data structure achieves this goal. 
Instead of running the Operations defining the quantum algorithm, the same calls can be 
used to build a Circuit that can be manipulated by various tools.  

Gate Represents an 

operator 

Operations Represents 

the operation of a gate on a 
state 

Circuit Represents a list 

of operations on gates. 



C O N C E P T S  A N D  D A T A  T Y P E S  

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

14 

The tools that operate on Circuits make up the majority of the simulation system and will 
be described in detail in later chapters.  



S E R I O U S  C O D I N G  

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

15 

Basic Operation  

Getting up and running quickly  

he two ways to interaction with the system are via a full compilation environment 

in Visual Studio linked to the LIQ𝑈𝑖|⟩ library (dll), or via an F# script hosted by 

the LIQ𝑈𝑖|⟩ application (exe). Both provide advantages. Compilation provides 
IntelliSense editing and a full debugging environment, while, scripting provides a quick and 

easy way to prototype and extend LIQ𝑈𝑖|⟩ while being able to quickly turn around 
simulations with varying parameters. There are also several test functions described in the 
rest of this manual that are built-in as well as provided in scripts (in the samples directory). 
All examples shown in this manual may be run in either way. 

Running LIQ𝑈𝑖|⟩ simply entails starting the LIQUiD.exe file which 
should reside in the same directory as the LIQUiD1.dll file. If started 

without arguments (or with illegal arguments), the program will give command line help: 

================================================== 
!!! ERROR: Need to provide at least one argument 
================================================== 
Liquid Usage:  Liquid [/switch...] function 
    Enclose multi-word arguments in double quotes 
 
Arguments (precede with / or -): 
 
   Switch     Default              Purpose 
   ------     -------------------- ------------------------ 
    /log      Liquid.log           Output log file name path 
    /la       Unset                Append to old log files (otherwise erase) 
 
    /s        ""                   Compile and load script file 
    /l        ""                   Load compiled script file 
 
 Final arg is the function to call: 
   function(pars,...) 
 
============================================ 
 
TESTS (all start with two underscores): 
   __Big()             Try to run large entanglement tests (16 through 33 qubits) 
   __Chem(m)           Solve Ground State for molecule m (e.g., H2O) 
   __ChemFull(...)     See QChem docs for all the arguments 
   __Correct()         Use 15 qubits+random circs to test teleport 
   __Entangle1(cnt)    Run n qubit entanglement circuit (for timing purposes) 
   __Entangle2(cnt)    Entangle1 with compiled and optimized circuits 
   __Entangles()       Draw and run 100 instances of 16 qubit entanglement test 
   __EntEnt()          Entanglement entropy test 
   __EIGS()            Check eigenvalues using ARPACK 
   __EPR()             Draw EPR circuit (.htm and .tex files) 

Chapter 

3 

T 

Execution Starting the 

simulator 



S E R I O U S  C O D I N G  

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

16 

   __Ferro(false,true) Test ferro magnetic coupling with true=full, true=runonce 
   __JointCNOT()       Run CNOTs defined by Joint measurements 
   __Noise1(d,i,p)     d=# of idle gates, i=iters, p=probOfNoise 
   __NoiseAmp()        Amplitude damping (non-unitary) noise 
   __QECC()            Test teleport with errors and Steane7 code (gen drawing) 
   __QFTbench()        Benchmark QFT used in Shor (func,circ,optimized) 
   __QLSA()            Test of HHL linear equation solver 
   __QuAM()            Quantum Associative Memory 
   __QWalk(typ)        Walk tiny,tree,graph or RMat file with graph information 
   __Ramsey33()        Try to find a Ramsey(3,3) solution 
   __SG()              Test spin glass model 
   __Shor(N,true)      Factor N using Shor's algo false=direct true=optimized 
   __show("str")       Test routine to echo str and then exit 
   __Steane7()         Test basic error injection in Steane7 code 
   __Teleport()        Draw and run original, circuit and grown versions 
   __TSP(5)            Try to find a Traveling Salesman solution for 5 to 8 cities 
   __UserSample()      Stub for placing user code (in Main.fs) 
 
 

Example 1: Command Line Syntax  

Any function in the system that has the [<LQD>] attribute may be entered on the command 
line with: 

LIQUiD <function>(<arg>,…) 

Arguments may be ints, floats, strings (with or without double quotes) and Booleans 
(true/false). All of the listed tests are defined in this way. 

If there are spaces required in a string argument, place the entire string in double quotes 
(“). If you need to pass a comma, use “\,” since it will otherwise be used to separate 
arguments to the function. For example, to print out a string that contains commas and 
spaces, you could type: 

> Liquid __show("This\, is a \"function call\"\, with commas") 
 
0:0000.0/=============== Logging to: Liquid.log opened ================ 
0:0000.0/This, is a "function call", with commas 
0:0000.0/=============== Logging to: Liquid.log closed ================ 
 

Example 2: Command line function execution 

Output from LIQ𝑈𝑖|⟩ is typically generated by the show command which takes the same 
arguments as printfn (implied newline at the end of a line). This routine provides several 
benefits over and above the standard printf family: 

1. Output is thread safe and guaranteed to output the complete line without being 
interrupted by output from other threads. 

2. All output is duplicated in the log file (or may be sent to the log file without being 
sent to the console). 

3. Each line is prepended with a thread ID to identify the source (0: above) and 
elapsed time (in minutes) since the start of this run (0000.0). 



S E R I O U S  C O D I N G  

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

17 

To create a new executable, the easiest approach is to place your code in the provided 
Main.fs file in the Liquid sub-directory and then build the entire solution (liquid.sln) 
with Visual Studio. This will create a new Liquid executable that has all of the capabilities 
of the original (argument parsing, scripts, ensemble execution…) as well as being able to 
call any of your functions from the command line that have the [<LQD>]  attribute defined. 
The provided sample is very simple: 

[<LQD>] 
let __UserSample() = 
    show "This module is a good place to put compiled user code"  

Example 3: UserSample - Extending the simulator 

Any routine that has the attribute [<LQD>] is callable from the command line. User routines 
do not need to begin with underscores (these are only used to delineate built-in sample 
routines). A full description of how to compile code will be given in a later chapter. For 
now, we’ll focus on extending the simulator via scripts ('liquid /s <script>.fsx’). 

The TESTS will be described in later sections of the manual (with sample code that generates 
them). 

Creating a script 

Scripts are F# source code files (ending in .fsx) and are executed against the LIQ𝑈𝑖|⟩ 
library. We’ll work through a complete example to show how one might write a script to 
perform a computation. Any function delimited with the [<LQD>] attribute (described later) 
may be called from the command line (__show used above has this attribute). 

Script files are very flexible and several examples are provided in the samples directory. 
We’ll work through the Entange1.fsx file now (details on the actual quantum calls will be 
filled in later). The first thing we’ll need is a common header: 

#if INTERACTIVE 
#r @"..\bin\Liquid1.dll"                  
#else 
namespace Microsoft.Research.Liquid // Tell the compiler our namespace 
#endif 
 
open System                         // Open any support libraries 
 
open Microsoft.Research.Liquid      // Get necessary Liquid libraries 
open Util                           // General utilities 
open Operations                     // Basic gates and operations 
 

Example 4: Script Header 



S E R I O U S  C O D I N G  

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

18 

Scripts may be run in several ways: 

1. From within LIQ𝑈𝑖|⟩ via the /s command. This is covered by the namespace line 
(when running non-interactively). 

2. After loading and compiling the script (in the previous step), you are left with a 
new .DLL that has your compiled code. You can efficiently execute this with the /l 
command (load a dll).  

3. From fsi (the F# interpreter) as a complete command (e.g., fsi –exec 

Entangle1.fsx). The file will load into the interpreter, execute and then exit (this 
is what the #if INTERACTIVE is for). 

4. From fsi interactively (e.g., fsi --use:Entangle1.fsx). The file will load and 
execute but the user is left inside the F# interpreter where all of the loaded 

functions (as well as all of LIQ𝑈𝑖|⟩  are available. 

To use fsi, you will need to be in the samples directory and it will need to be in your path. 
A typical location to find it would be: 

"%ProgramFiles(x86)%\Microsoft SDKs\F#\4.0\Framework\v4.0\fsi.exe" 

All necessary System and LIQ𝑈𝑖|⟩ modules are opened in the header. The header is 
followed by the code we wish to define and execute. Usually, we put this in a module called 
Script where we define any number of routines, flagging any that we wish to call from 
the command line with the [<LQD>] attribute: 

    [<LQD>] 
    let Entangle1(entSiz:int) = 
        logOpen "Liquid.log" false 
 
        let qt      = QubitTimer() 
 
        let ket     = Ket(entSiz)     // Start with a full sized state vector     
        let _       = ket.Single() 
        qt.Show "Created single state vector" 
 

Example 5: User script module 

Here we opened a log file and defined a timing function that will let us print out statistics 
as we run (the QubitTimer definition may be found in the script file). We then make a state 
vector (Ket) that will represent all of our qubits and force it to full size (ket.Single()) 

converting the efficient (unentangled) representation of the state vector that LIQ𝑈𝑖|⟩ 
normally uses to a fully realized state vector (2𝑁 in size). This is being used to show what 
are timings are like with fully entangled state vectors. If you comment out this line, 
everything will run much faster. 

Now let’s do the rest of the entanglement timing test: 

        let qs      = ket.Qubits 
        H qs                                   // Hadamard the first qubit 
        qt.Show "Did Hadamard" 
     



S E R I O U S  C O D I N G  

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

19 

        let q0  = qs.Head 
        for i in 1..qs.Length-1 do 
            let q   = qs.[i] 
            CNOT[q0;q]                        // Entangle all the other qubits 
            let str = sprintf "  Did CNOT: %2d" i 
            qt.Show(str,i,(i=qs.Length-1)) 
     
        M >< qs                               // Measure all the qubits 
        qt.Show("Did Measure",qs.Length) 
        show "" 
 

Example 6: Entanglement circuit 

We first ask the state vector for the qubits that it represents (qs:Qubits). The qubits are 
always represented as an F# list and all qubit operations (gates) always have a qubit list as 
their last argument. In addition, these functions never return a value because the qubits are 
maintained in their own state (the Ket vector). Now we apply a Hadamard gate (H) to the 
first qubit in the list. By convention, all gate operations will apply to the head of the list, 
using as many qubits as they need (e.g., CNOT will apply to the first two). This allows lists 
of any length to be used (useful for register operations) as well as allowing functions that 
operate on variable numbers of qubits (e.g., Quantum Fourier Transform (QFT)). 

So far, we’ve called one quantum function (Hadamard) on the first qubit. Now we perform 
a loop to entangle (CNOT) the first qubit with the remaining qubits. This is an expensive 
operation and so we print out the timing statistics as we do each qubit. Finally, we measure 

all the qubits (M >< qs) using a built-in LIQ𝑈𝑖|⟩ function, the “bowtie” that applies a gate 
(M) to all the qubits in a list. 

We have several ways to run this sample. The easiest is to use the built-in version that’s 

already in LIQ𝑈𝑖|⟩ (assuming that we’re in the samples directory): 

 
> ..\bin\Liquid __Entangle1(22) 
 
0:0000.0/=============== Logging to: Liquid.log opened ================ 
0:0000.0/ 
0:0000.0/ Secs/Op  S/Qubit  Mem(GB) Operation 
0:0000.0/ -------  -------  ------- --------- 
0:0000.0/   0.788    0.788    0.365 Created single state vector 
0:0000.0/   0.522    0.522    0.365 Did Hadamard 
0:0000.0/   0.485    0.485    0.366   Did CNOT:  1 
0:0000.0/   0.995    0.498    0.367   Did CNOT:  2 
0:0000.1/   1.491    0.497    0.368   Did CNOT:  3 
0:0000.1/   1.949    0.487    0.369   Did CNOT:  4 
0:0000.1/   2.433    0.487    0.370   Did CNOT:  5 
0:0000.1/   2.906    0.484    0.370   Did CNOT:  6 
0:0000.1/   3.378    0.483    0.370   Did CNOT:  7 
0:0000.1/   3.835    0.479    0.370   Did CNOT:  8 
0:0000.1/   4.301    0.478    0.371   Did CNOT:  9 
0:0000.1/   4.766    0.477    0.372   Did CNOT: 10 
0:0000.1/   5.230    0.475    0.373   Did CNOT: 11 
0:0000.1/   5.697    0.475    0.374   Did CNOT: 12 
0:0000.1/   6.165    0.474    0.375   Did CNOT: 13 
0:0000.1/   6.624    0.473    0.375   Did CNOT: 14 
0:0000.1/   7.089    0.473    0.376   Did CNOT: 15 
0:0000.2/   7.559    0.472    0.377   Did CNOT: 16 
0:0000.2/   8.020    0.472    0.378   Did CNOT: 17 
0:0000.2/   8.488    0.472    0.379   Did CNOT: 18 
0:0000.2/   8.948    0.471    0.380   Did CNOT: 19 



S E R I O U S  C O D I N G  

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

20 

0:0000.2/   9.419    0.471    0.381   Did CNOT: 20 
0:0000.2/   9.873    0.470    0.382   Did CNOT: 21 
0:0000.2/   0.700    0.032    0.431 Did Measure 
0:0000.2/ 
0:0000.2/=============== Logging to: Liquid.log closed ================  
 

Example 7: Running Entangle1 

The numbers in front of the slash (0:0000.2/) are output on every show command 
(superset of printfn). The number in front of the colon is a thread ID (useful when using 
multiple threads to output… also show is fully thread safe and won’t create partial outputs). 
The number after the colon is the number of minutes (.tenths) since the app started. 

In this case, we ran for .2 minutes or approximately 12 seconds total. If we wanted to run 
our script (Entangle1.fsx) from the samples directory, we would enter: 

> ..\bin\Liquid /s Entangle1.fsx Entangle1(22) 
0:0000.0/=============== Logging to: Liquid.log opened ================ 
Microsoft (R) F# Compiler version 14.0.23020.0 
Copyright (c) Microsoft Corporation. All Rights Reserved. 
0:0000.0/ 
0:0000.0/ Secs/Op  S/Qubit  Mem(GB) Operation 
0:0000.0/ -------  -------  ------- --------- 
0:0000.0/   0.803    0.803    0.356 Created single state vector 
0:0000.0/   0.601    0.601    0.356 Did Hadamard 
0:0000.0/   0.495    0.495    0.357   Did CNOT:  1 
0:0000.1/   0.967    0.484    0.358   Did CNOT:  2 
0:0000.1/   1.433    0.478    0.358   Did CNOT:  3 
... 
0:0000.2/   9.170    0.483    0.373   Did CNOT: 19 
0:0000.2/   9.645    0.482    0.374   Did CNOT: 20 
0:0000.2/  10.107    0.481    0.375   Did CNOT: 21 
0:0000.2/   0.723    0.033    0.431 Did Measure 
0:0000.2/ 
0:0000.2/=============== Logging to: Liquid.log closed ================ 
 

Example 8: Entangle1 running from a script 

The main difference is that now we had to call the F# Compiler to build a DLL that we 
loaded back into our image for execution. This is why it took slightly longer to run. 
However, now that we have the DLL, we can just do: 

> ..\bin\Liquid /l Entangle1.dll Entangle1(22) 
 

Example 9: Entangle1 from a pre-built DLL 

This will run the same without requiring a compilation step. One other option we have is 
to run using the F# interpreter. Provided that fsi.exe is in our path, we can just do: fsi --
exec Entangle1.fsx and the script will run using the “INTERACIVE” defaults that are in 
the file. 

Another option is to take the circuit we’ve defined and compile the gates into a data 
structure called a circuit. This is demonstrated in the Entangle2 routine. Here, we define 
all the same quantum operations in a function: 

        let ops (qs:Qubits) = 



S E R I O U S  C O D I N G  

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

21 

     H qs 
            let q0  = qs.Head 
            for i in 1..qs.Length-1 do CNOT !!(qs,0,i) 
            M >< qs                                         // Measure all the qubits 
 

Example 10: Single Entanglement circuit 

We’ve made use of another built-in helper function (!!) which will pull out the indexed 
qubits from a list and create a new list. If we call ops directly, we will get the exact results 
we saw in Entangle1. However, we can turn this into a circuit data structure and then 
execute the data structure: 
        let circ    = Circuit.Compile ops qs // Compile and run circuit 
        circ.Run qs 
        let circ2   = circ.GrowGates(ket) // Optimize and run circuit 
        circ2.Run qs 
 

Example 11: Circuit Compilation and running 

The circuit is actually slightly slower than the direction function calls. However, circuits are 
useful for many purposes. Since they are a data structure, the can be analyzed, modified, 
optimized, replaced, rendered as drawings, exported to other systems and simply run as if 
they were the original circuit. The second two lines in the example create an optimized 
version of the circuit. Here’s what happens when we run all three variants: 

 
0:0000.0/ Secs/Op  S/Qubit  Mem(GB) Operation 
0:0000.0/ -------  -------  ------- --------- 
0:0000.2/  11.474   11.474    0.419 Straight function calls 
0:0000.2/   0.952    0.952    0.366 Compile cost 
0:0000.4/  12.746   12.746    0.419 Compiled circuit run time 
0:0000.5/   0.878    0.878    0.544 Optimization cost 
0:0000.5/   2.330    2.330    0.362 Optimized circuit run time 
 

Example 12: Entangle1 with optimization run times 

Here you can see that the compiled circuit is slightly slower, but the optimized version is 

~5 times faster. LIQ𝑈𝑖|⟩ contains a large number of user accessible optimizations to make 
quantum simulations as efficient as possible. 

To see the generated circuit, we could call the Dump command: 

            circ.Dump(showLogInd) 
 

Example 13: Dump of Teleport Circuit 

The Dump command is defined throughout the system on most LIQ𝑈𝑖|⟩ data types and 
may be nested. For this reason it takes up to two arguments: a dumping function 
(showLogInd) which writes the output to the log in an indented manner and a starting 
indentation level (showInd will output to the log and the console). The result for 
Entangle2(2) is: 

Circuit dump (in Liquid.log): 
SEQ 



S E R I O U S  C O D I N G  

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

22 

  APPLY 
    GATE H is a  (Normal) 
      0.7071 0.7071 
      0.7071 -0.7071 
    WIRE(Id:0) 
    WIRE(Id:1) 
  APPLY 
    GATE CNOT is a Controlled NOT (Normal) 
      1 0 0 0 
      0 1 0 0 
      0 0 0 1 
      0 0 1 0 
    WIRE(Id:0) 
    WIRE(Id:1) 
  APPLY 
    GATE Meas is a Collapse State (Measure(,Joint=)) 
      1 0 
      0 1 
    WIRE(Id:0) 
  APPLY 
    GATE Meas is a Collapse State (Measure(,Joint=)) 
      1 0 
      0 1 
    WIRE(Id:1) 

Example 14: Dump of Entangle2(2) Circuit 

Another manipulation would be to take the circuit and combine multiple gates together 
into larger unitary representations. This allows for more efficient simulation and is known 

in LIQ𝑈𝑖|⟩ as “growing gates”. If we dump out Entangle2(4), and then look at the result, 
we see that the Hadamard gate and all the CNOT gates have been reduced to a single 
Unitary: 

  APPLY 
    GATE B00ECF3 is a B00ECF3 (Normal)  
      0.7071 0 0 0 0 0 0 0 0.7071 0 0 0 0 0 0 0  
      0 0.7071 0 0 0 0 0 0 0 0.7071 0 0 0 0 0 0  
      0 0 0.7071 0 0 0 0 0 0 0 0.7071 0 0 0 0 0  
      0 0 0 0.7071 0 0 0 0 0 0 0 0.7071 0 0 0 0  
      0 0 0 0 0.7071 0 0 0 0 0 0 0 0.7071 0 0 0  
      0 0 0 0 0 0.7071 0 0 0 0 0 0 0 0.7071 0 0  
      0 0 0 0 0 0 0.7071 0 0 0 0 0 0 0 0.7071 0  
      0 0 0 0 0 0 0 0.7071 0 0 0 0 0 0 0 0.7071  
      0 0 0 0 0 0 0 0.7071 0 0 0 0 0 0 0 -0.7071  
      0 0 0 0 0 0 0.7071 0 0 0 0 0 0 0 -0.7071 0  
      0 0 0 0 0 0.7071 0 0 0 0 0 0 0 -0.7071 0 0  
      0 0 0 0 0.7071 0 0 0 0 0 0 0 -0.7071 0 0 0  
      0 0 0 0.7071 0 0 0 0 0 0 0 -0.7071 0 0 0 0  
      0 0 0.7071 0 0 0 0 0 0 0 -0.7071 0 0 0 0 0  
      0 0.7071 0 0 0 0 0 0 0 -0.7071 0 0 0 0 0 0  
      0.7071 0 0 0 0 0 0 0 -0.7071 0 0 0 0 0 0 0  
    WIRE(Id:0) 
    WIRE(Id:1) 
    WIRE(Id:2) 
    WIRE(Id:3) 

Example 15: Optimized Entanglement circuit 

One other example shown in Entangle1.fsx is drawing the circuits we’ve created. This 
can be easily accomplished by calling the rendering package: 

 
        circ.Fold().RenderHT("Entangle2raw") 
        circ2.Fold().RenderHT("Entangle2opt") 
 
 

Example 16: Rendering a circuit 



S E R I O U S  C O D I N G  

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

23 

RenderHT creates both HTML (SVG) and LaTeX (TikZ) drawings. The Fold call shifts 
everything to the left for nicer output. Here’s what the created drawing looks like for 
Entangle2(10) for the raw and optimized circuits: 

  

     

 

Figure 3: Entangle2(10) circuit drawing (HTML and LaTeX) 

An example of a very sophisticated built-in test is Shor’s algorithm. It is called with two 
parameters: The number to be factored and whether to optimize (grow) the circuit. If we 
hand it an illegal number to factor, we’re given a table of sample legal numbers to try: 

> Liquid.exe __Shor(1,true) 
0:0000.0/=============== Logging to: Liquid.log opened ================ 
0:0000.0/Legal numbers include: 
0:0000.0/ 4 bits:     15 
0:0000.0/ 5 bits:     21 
0:0000.0/ 6 bits:     63    57    55    51    45    39    35    33 
0:0000.0/ 7 bits:    123   119   117   115   111   105    99    95    93    91 
0:0000.0/ 8 bits:    255   253   249   247   245   237   235   231   225   221 
0:0000.0/ 9 bits:    511   507   505   501   497   495   493   489   485   483 
0:0000.0/10 bits:   1023  1017  1015  1011  1007  1005  1003  1001   999   995 
0:0000.0/11 bits:   2047  2045  2043  2041  2037  2035  2033  2031  2025  2023 
0:0000.0/12 bits:   4095  4089  4087  4085  4083  4081  4077  4075  4071  4069 
0:0000.0/13 bits:   8189  8187  8185  8183  8181  8177  8175  8173  8169  8165 
0:0000.0/14 bits:  16383 16379 16377 16375 16373 16371 16367 16365 16359 16357 
0:0000.0/15 bits:  32767 32765 32763 32759 32757 32755 32753 32751 32747 32745 



S E R I O U S  C O D I N G  

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

24 

0:0000.0/16 bits:  65535 65533 65531 65529 65527 65525 65523 65517 65515 65513 

Example 17: Sample numbers to factor 

Factoring 55 yields: 

> Liquid.exe __Shor(55,true) 
0:0000.0/=============== Logging to: Liquid.log opened ================ 
0:0000.0/======== Doing Shor Round ========= 
0:0000.0/      55 = N = Number to factor 
0:0000.0/       2 = a = coPrime of N 
0:0000.0/       6 = n = number of bits for N 
0:0000.0/      64 = 2^n 
0:0000.0/      15 = total qubits 
0:0000.0/      29 = starting memory (MB) 
0:0000.0/  30.66% = prob of random result (1256/4096) 
0:0000.0/  38.69% = prob of Shor (worst case) 
0:0000.0/         - Compiling circuit 
0:0000.0/0.000945 = mins for compile 
0:0000.0/   30540 = cnt of gates 
0:0000.0/    7351 = cache hits 
0:0000.0/     143 = cache misses 
0:0000.0/      36 = compiled memory (MB) 
0:0000.0/         - Wrapping circuit pieces 
0:0000.0/       8 = wires have possibles:158 (prv=  0GB did=     0 big=     0) 
0:0000.0/       9 = wires have possibles:153 (prv=  0GB did=     5 big=    60) 
0:0000.0/      10 = wires have possibles:136 (prv=  0GB did=    22 big=   124) 
0:0000.0/      11 = wires have possibles:111 (prv=  0GB did=    47 big=   217) 
0:0000.0/      12 = wires have possibles:109 (prv=  0GB did=    49 big=   318) 
0:0000.0/      13 = wires have possibles:105 (prv=  0GB did=    53 big=   416) 
0:0000.0/      14 = wires have possibles:103 (prv=  0GB did=    55 big=   514) 
0:0000.0/      15 = wires have possibles:103 (prv=  0GB did=    55 big=   612) 
0:0000.0/      16 = Ran out of wires 
0:0000.0/           MM: g:    55 b:   714  13=2 12=4 11=2 10=25 9=17 
0:0000.0/0.008407 = mins for growing gates 
0:0000.0/    1236 = cnt of gates 
0:0000.0/     165 = grown memory (MB) 
0:0000.0/        Bit:  11 [MB:  177 m=1] 
0:0000.0/        Bit:  10 [MB:  236 m=1] 
0:0000.0/        Bit:   9 [MB:  259 m=0] 
0:0000.1/        Bit:   8 [MB:  272 m=0] 
0:0000.1/        Bit:   7 [MB:  295 m=1] 
0:0000.1/        Bit:   6 [MB:  313 m=1] 
0:0000.1/        Bit:   5 [MB:  352 m=0] 
0:0000.1/        Bit:   4 [MB:  329 m=0] 
0:0000.1/        Bit:   3 [MB:  328 m=1] 
0:0000.1/        Bit:   2 [MB:  337 m=1] 
0:0000.1/        Bit:   1 [MB:  355 m=0] 
0:0000.2/        Bit:   0 [MB:  345 m=1] 
0:0000.2/0.070623 = mins for running 
0:0000.2/ 8.75308 = Total Elapsed time (seconds) 
0:0000.2/      15 = Max Entangled 
0:0000.2/       0 = Gates Permuted 
0:0000.2/    1191 = State Permuted 
0:0000.2/      80 = None  Permuted 
0:0000.2/    2867 = m = quantum result 
0:0000.2/0.699951 = c = 2867/4096 =~ 7/10  
0:0000.2/       5 = 10/2 = exponent 
0:0000.2/      33 = 2^5 + 1 mod 55 
0:0000.2/      31 = 2^5 - 1 mod 55 
0:0000.2/      11 = factor = max(11,1) 
0:0000.2/CSV N a m den f1 f2 good,55,2,2867,10,11,5,1 
0:0000.2/GOT:   55=  11x   5 co=    2 n,q= 6,15 mins=0.15 SUCCESS!! 

Example 18: Factoring 65 with Shor's algorithm 

Some items to note from this run: 

1. The circuit had 30,540 basic gates that were reduced to 1,236 grown gates 



S E R I O U S  C O D I N G  

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

25 

2. The entire run took 8.75 seconds on a laptop. If we had run this without 
optimization (__Shor(55,false)) it would have taken 1.6 minutes (11x slower!) 

3. We succeeded: 55 =11 x 5 even though the random probability of success was only 
31%. 

 

Advanced Topics 

Quantum Error Correction 

everal advanced techniques are built into the simulator beyond simple gates and 
circuits. In the following chapters we will delve in to them in more detail. For now, 
let’s just show how they may be accessed directly. 
 

Let’s use a circuit for teleport as our basic circuit (Figure 4). This circuit is the “hello 
world” of quantum computing and is fully described in Nielsen and Chuang. It will take a 
Src qubit in any state and teleport it to the Dest qubit (no matter how physically far apart 

they are). We can run this example directly from LIQ𝑈𝑖|⟩ as __Teleport() or as the script 
in the samples directory as Teleport.fsx. In either case, the example shows teleportation of 
several values via function calls, a compiled circuit and an optimized circuit). It also 
generates several renderings (in HTML/SVG and LaTeX/TikZ). The one in the figure 
shown here is Teleport_CF.tex (CF = Circuit Folded).  

 
Figure 4: Basic Teleport Circuit 

Now, we’d like to add error correction to our operation. The first thing we’re going to do 

is define two functions and their circuits that teleport the values |0⟩ and |1⟩ respectively 
(the complete example is in QECC.fsx): 
 
        // Teleport for Stabilizers and QECC 
        let tele0 (qs:Qubits)   = teleport qs; M [qs.[2]] 
        let tele1 (qs:Qubits)   = X qs; teleport qs; M [qs.[2]] 
        let k                   = Ket(3) 
        let tgtC0               = Circuit.Compile tele0 k.Qubits 
        let tgtC1               = Circuit.Compile tele1 k.Qubits 
 

Example 19: Teleport circuit definitions 

S 



S E R I O U S  C O D I N G  

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

26 

Quantum Error Correction Codes (or QECC) are defined as a user extensible class (see the 
Extensions chapter for detail). One of the built-in codes is called Steane7 which is a 
Caldebrank-Shor-Steane 7 qubit code (CSS Steane [[7,1,3]]). In this code, each logical qubit 
gets expanded into 7 physical qubits which can be used to detect errors and correct them. 
 
Following tgtC0, we’ll convert from a logical circuit into a physical circuit with: 
 
        let s7      = Steane7(tgtC0) 

  let s7C     = s7.Circuit 
        s7C.Fold().RenderHT("QECC_min",0,100.0,33.0) 
        s7C.Fold().RenderHT("QECC_all",1,50.,20.) 
 
 

Example 20: Mapping a Logical to a Physical circuit 

The third line create a drawing of a high level view of the circuit (100% in on figure at a 
scale of 33%): 

  

 
Figure 5: High level Teleport QECC circuit (LaTeX version) 

 

The last line generates a low level view (Level=1, 50% of the circuit is in each figure, scale 
to 20% of the default size): 



S E R I O U S  C O D I N G  

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

27 

  

 

Figure 6: Low level Teleport QECC circuit (HTML version) 

 
We started with 3 qubits and a small circuit… To do error correction we had to encode 
each of our 3 logical qubits into 7 physical qubits (21 qubits) + 6 qubits for computation 
(Ancilla). 27 qubits is almost at our limit… so we can’t go much beyond this before we run 
out of memory... this will lead us to the next simulator type – Stabilizers. 
 
The circuit also got a lot more complicated because we had to provide: 
 

1. State Preparation circuits that convert a logical qubit into 7 encoded physical 
qubits 

2. New gates that replace the old ones, operating on 7 encoded qubits for every 
input/output logical qubit, returning an encoded result. 

3. Syndrome measurement circuitry that determines which if any errors have 
occurred. 

4. Error correction circuitry that fixes bad codes. 
 
If we run this circuit, it will work and provide the correct answers… but there are two other 
things we can do with it that are more interesting. First, we’d like to inject errors. This can 
be done with: 
 
            let errC,stats  = s7.Inject 0.01 
 

Example 21: Injecting errors for QECC 

The probability of an error is specified 0.01 for any wire between gates and errors are 
injected (a randomly chosen X, Y or Z gate) throughout the circuit. This generates a new 
circuit (errC) as well as a list of statistics (stats) that tell us the number of X, Y and Z gates 



S E R I O U S  C O D I N G  

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

28 

inserted into the circuit. Of course, this new circuit can be run and analyzed as well as 
manipulated further. 
 
 

This output states that the new circuit contains an X error and a Y error. If we draw this 
circuit (at level 0) we can easily see where the errors were inserted. Here’s the section that 
contains the errors: 
 

 

Figure 7: Error Insertion 

We can run the circuit directly at this point, but there’s a better alternative. We can switch 
to a Stabilizer simulation engine (since the circuit only contains legal gates for that simulator 
(by design)) by issuing the command: 
 
            let stab            = Stabilizer(errC,ket) 
            stab.Run() 
 

Example 22: Running a Stabilizer simulation 

This will run very quickly (it can handle 10s of thousands of qubits, but only a limited gate 
set). However, we now have the problem of interpreting the results. We need to convert 
physical qubits back to logical qubits. This can be done with statements like: 
 
        let bit0,dist0  = s7.Log2Phys 0 |> s7.Decode 
        let bit1,dist1  = s7.Log2Phys 1 |> s7.Decode 
        let bit2,dist2  = s7.Log2Phys 2 |> s7.Decode 



S E R I O U S  C O D I N G  

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

29 

         
        show "InjectedXYZ(%d,%d,%d) Fixes=%d (%4s,%4s,%4s)  
                                          dist=(%d,%d,%d)%s"  
            stats.[0] stats.[1] stats.[2] 
            s7.NumFixed 
            (bit0.ToString()) (bit1.ToString()) (bit2.ToString()) 
            dist0 dist1 dist2 
            (if bit2 <> inp then " <====== BAD" else "") 
 
 

Example 23: Obtaining QECC results 

 

The first three statements pick out the physical qubits that represent a logical qubit 
(Log2Phys) and then converts them to the closest code value (Decode) returning the bit 
that best represents the code and the classical distance from the code. We then show for 
output the injected errors (stats) the number of times we needed to apply a fix in the 
quantum circuit (NumFixed), the actual bits we decoded and their distance from the 
correct code value. Typical output looks like this: 
 

  InjectedXYZ(0,1,1) Fixes=3 (Zero,Zero,Zero) dist=(0,0,0) 
 

Example 24: Output of Stabilizer run 

Here we injected a Y and a Z error, fixed three errors that propagated through the circuit, 
measured the three logical qubits as al Zero and had no classical decoding errors (0,0,0) 
 
The third simulation engine (Hamiltonian) will be described in its own chapter, however 
there is a sample script provided (h2.fsx) which will allow you to solve the ground state 

energy for an 𝐻2 molecule (2nd Quantized Hamiltonian) and Ferro.fsx which 
demonstrates various ferro-magnetic chain examples (1st Quantized Hamiltonian).



S E R I O U S  C O D I N G  

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

30 

Serious Coding 

Compilation 

ompiliation via Visual Studio provides the most immersive environment for 
creating sophisticated circuits and simulations. It also provides a full 
interactive debugging environment. It is no more difficult to use than 
scripting mode and a sample project is provided to help getting started. This 

approach to a data specific language stems from the Language INtegrated Query 
(LINQ) model used for many other application areas in Microsoft .Net languages. 

LIQ𝑈𝑖|⟩ is not a LINQ language but shares many of the same goals. This section 
will heavily rely on the F# programming language. However, it will be presented in 
such a way that knowledge of any other high level language should be sufficient to 
understand the examples and to get started on your own quantum algorithm 
implementations. 
 
Let’s return to the teleport example from the previous chapter and re-create it 
directly in a Visual Studio project. If you open the provided solution (Liquid.sln), 
you’ll find the top level application project (Liquid): 
 

 
 

Figure 8: Liquid project 

A sample file (Main.fs) is provided that you can edit yourself, or supplement with one 

or more files that will be called by Main.fs when you run LIQ𝑈𝑖|⟩. Main.fs contains a 
module named UserSample for this purpose; its contents are straight-forward: 

module UserSample = 

Chapter 

4 

C 



S E R I O U S  C O D I N G  

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

31 

    open Util 
    open Operations 
    // Optional extras: 
    //open Native             // Support for Native Interop 
    //open HamiltonianGates   // Extra gates for doing Hamiltonian 
simulations 
    //open Tests              // All the built-in tests 
 
    [<LQD>] 
    let __UserSample() = 
        show "This module is a good place to put compiled user code" 

Figure 9: Main.fs 

The header looks just like the script (.fsx) examples and we have one routine 
marked with the [<LQD>] attribute which will be callable from the command line. If 
we compile and run the system, we get: 
 

> liquid UserSample() 
0:0000.0/=============== Logging to: Liquid.log opened ================ 
0:0000.0/This module is a good place to put compiled user code 
0:0000.0/=============== Logging to: Liquid.log closed ================ 

Example 25: UserSample execution 

One thing to note is that white-space indentation is significant in F#, this allows 
you to define blocks without the need for curly braces (or equivalent). Normally, 
statements are separated by newlines, but you are allowed to use semi-colon as well 
(to put multiple statements on the same line). 
 

Data Types 

We’re now going to re-visit the basic data types of the system that we first summarized 
in Chapter 2 and go into more detail. Let’s return to the Teleport.fsx sample script to 
show some of the data types. We’re going to move to fully interpreted mode by 
executing: 

> fsi --use:Teleport.fsx 

Example 26: Starting Teleport in fully interactive mode 

This assumes that fsi.exe is in your PATH and your current directory is the Samples 
directory. After the Teleport example runs, we are left in the F# interpreter where 

we now have a full LIQ𝑈𝑖|⟩ environment. A couple of basic notes about fsi are in 
order: 
 



S E R I O U S  C O D I N G  

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

32 

1. Comands are only executed after two semi-colons are entered (;;) 
2. #quit;; will exit the interpreter 

 
Now we’d like to create our own Ket vector of 3 Qubits: 
 

 
> let ket = Ket(3);; 
 
val ket : Ket = 
  Ket of 3 qubits: 
=== KetPart[ 0]: Qubits (High to Low): 2 
          1 
          0 
=== KetPart[ 1]: Qubits (High to Low): 1 
          1 
          0 
=== KetPart[ 2]: Qubits (High to Low): 0 
          1 
          0 
 

Example 27: Creation of a Ket from fsi 

Since fsi prints out the value of the last statement executed, we see that the Ket is 

made up of 3 KetParts each containing 1 qubit of state 0: (
1
0
). KetParts represent 

entangled qubits, so since we started with 3 unentangled qubits, we have 3 KetParts. 
As we run circuits, qubits will be become more and more entangled and each 
individual KetPart will grow in size, while the number of them will decrease (there 
will be only one if all the Qubits are fully entangled). We can now set a variable to 
the list of qubits: 

 
> let qs  = ket.Qubits;; 
 
val qs : Qubit list = 
  [    1|0>+      0|1>;   1|0>+      0|1>;  1|0>+      0|1>] 
 

Example 28: Obtain Qubits from state 

…and run teleport on them: 
 

> teleport qs;; 
 

val it : unit = () 
 

Example 29: Run teleport in fsi 

 

Operations (gates and circuits) don’t return a value, so all we see is unit (which 
means “nothing”). If however, we take a look at the individual qubits at this point, 
we see: 
 

> for q in qs do show "q[%d]=%s" q.Id (q.ToString());; 
0:0001.5/q[0]=      0|0>+      1|1> 

Kets and Qubits 

States and the parts 



S E R I O U S  C O D I N G  

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

33 

0:0001.5/q[1]=      1|0>+      0|1> 
0:0001.5/q[2]=      1|0>+      0|1> 
 

Example 30: Printing out Qubit values 

The output shows that q0 got measured as a |1⟩, q1 got measured as a |0⟩ and the 

message was returned as a |0⟩. Not very impressive, but it is what we started with. 
 
Now let’s do the same circuit, but start from a less trivial state: 
 

let ket = Ket(3) 
let qs  = ket.Qubits 
let a = sqrt(0.25) 
let b = sqrt(0.75) 
qs.[0].StateSet(a,0.0,b,0.0) 
show "Input  message: %s" (qs.[0].ToString());; 
teleport qs 
show "Output message: %s [Measured: %d%d]"  
      (qs.[2].ToString()) qs.[0].Bit.v qs.[1].Bit.v;; 
 

Example 31: Teleport with an interesting initial state 

 

This is the same as before, except we’re starting from a new state (StateSet) and 
printing out the starting and ending states. The results are: 
 

0:0014.1/Input  message:     0.5|0>+  0.866|1> 
0:0014.2/Output message:     0.5|0>+  0.866|1> [Measured: 10] 
 

Example 32: Results from non-trivial teleport 

Now we’ve sent a non-trivial message and it arrived in good shape. Also, we 
randomly measured q0 as a One which means we had to apply the controlled Z gate 
to recover the input message. 
 

Continuing our example, we’d like to compile our teleport 
function into a circuit for further manipulation (e.g., drawing, 

printing, parallelizing, optimizing…). To obtain a Circuit all we need is a state 
vector that defines our Qubits and the function we wish to compile: 
 
    > let circ = Circuit.Compile teleport qs;; 

 
val circ : Circuit = 
  Seq 
    [Apply (GATE Src is a Label qubit: Src (String), Mat(2),[0]); 
     Apply (GATE |0> is a Label qubit: |0> (String), Mat(2),[1]); 
     Apply (GATE |0> is a Label qubit: |0> (String), Mat(2),[2]); 
     Apply (GATE H is a  (Normal), Mat(2),[1; 2]); 
     Apply (GATE CNOT is a Controlled NOT (Normal), Mat(4),[1; 2]); 
     Apply (GATE CNOT is a Controlled NOT (Normal), Mat(4),[0; 1; 2]); 
     Apply (GATE H is a  (Normal), Mat(2),[0; 1; 2]); 
     Apply (GATE Meas is a Collapse State (Measure), Mat(2),[1]); 
     BitCon 
       (GATE BitContol is a Bit control Qubit operator (BitControl(1)), Mat(0), 
        [1; 2],<fun:op@183>, 
        Apply (GATE X is a Pauli X flip (Normal), Mat(2),[2])); 
     Apply (GATE Meas is a Collapse State (Measure), Mat(2),[0]); 

Circuits Compiling 

functions to circuits 



S E R I O U S  C O D I N G  

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

34 

     BitCon 
       (GATE BitContol is a Bit control Qubit operator (BitControl(1)), Mat(0), 
        [0; 2],<fun:op@183>, 
        Apply (GATE Z is a Pauli Z flip (Normal), Mat(2),[2])); 
     Apply (GATE Dest is a Label qubit: Dest (String), Mat(2),[2])] 

 
Example 33: Circuit data structure 

Here we see the data structure of the circuit we’ve created. Circuits may contain 
the following elements: 
 

1. Seq: List of Circuits to execute in sequential order 
2. Par: List of Circuits that may be executed in parallel 
3. Apply: Application of a Gate to a set of wires (Qubits) 
4. Ext: A Gate that extends the meaning of another Gate 
5. BitCon: List of binary wires and a function on them that determine if a sub-

Circuit is applied (Binary Control) 
6. Wrap: Meta Gate that contains a Circuit of other Gates 
7. Empty: Denotes an empty Circuit 

 
This is fairly simple structure for an abstract syntax tree (AST) but is both 
sophisticated enough to hold all of our desired circuits and is still simple enough for 
the user to parse and manipulate easily (more on this in the Circuit Manipulation 
chapter) 
 

Mentioned several times previously are items that have the Bit 
data type. This is not a standard binary value or replaceable by a Boolean. It 
specifically refers to a quantum value (Qubit) that has been measured, or a true 
unmeasured Qubit if the value is Unknown. Qubits maintain knowledge that they’ve 
been measured and can no longer be used in unitary operations. They may be 
brought “back to life” by non-unitary gates (described later in this chapter) and are 
also used for initializing unentangled qubits by referring directly to Zero (initializes 

|0⟩) or One (initializes|1⟩). 
 

Gates themselves have a specific structure that allows for re-
use in many ways. We’ll go into all the options in the chapter 

on extending the simulator, but here’s an example of taking our teleport function 
and turning into a first-class gate: 
 

> let teleGate    = 
         let gate (qs:Qubits) = 
             new Gate( 
                 Qubits  = 3, 
                 Name    = "teleGate", 
                 Op      = WrapOp teleport 
             ) 
         fun (qs:Qubits) -> (gate qs).Run qs;; 

Example 34: Creating teleport as a new Gate 

Bits Measured values 

Gates Fundamental 

elements 



S E R I O U S  C O D I N G  

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

35 

Now we can run this new gate like any other: 

> ket.Reset 3 |> teleGate;; 
val it : unit = () 

Example 35: Creating a simple gate 

A few non-obvious things were done in this one line. Since the Ket vector we used last 
time was left in an unusable state (entangled, measured…) we performed a Reset on the 
state re-initializing it to a known number of Qubits (3) in a known state (by default 

|000⟩). The Reset returned a list of qubits, so we passed it to our new Gate for 
execution. Now that our teleport function is a Gate, we can define drawing instructions 
for it, it can be built into larger gates and it is manipulable inside of compiled circuits.   

 

Built-in Gates 

What’s available? 

ates can range from a simple unitary matrix definition to large complex 
pieces of code that dynamically decide what to do at runtime. In this 
section we’ll explore the various kinds of gates already available in the 
system and in the following chapter we’ll describe how to define new 

ones. 
 
The most straight-forward gates are those that represent standard unitary 
operations. These include: 
 

 Hadamard (H) which takes an input qubit and rotates the basis: 
1

√2
[
1 1
1 −1

] 

 Pauli NOT gate (X) which performs a  bit-flip:  [0 1
1 0

] 

 Pauli Y gate (Y):  [0 −𝑖
𝑖 0

] 

 Pauli phase flip gate (Z): which changes the sign of  |1⟩:  [1 0
0 −1

] 

 Pauli identity gate (I): which does nothing:  [1 0
0 1

] 

 Phase gate (S) which flips the phase of a qubit: [1 0
0 𝑖

]  

 
𝜋

8
 phase gate (T): [1 0

0 𝑒𝑖2𝜋/8
] 

 General rotation gate (R k): [
1 0

0 𝑒𝑖2𝜋/2
𝑘] 

 Eigenvalue measuring gate (U k). K = fraction of 2𝜋 

G 



S E R I O U S  C O D I N G  

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

36 

 Controlled-Not gate (CNOT): First qubit is control, second qubit is flipped if 

first qubit is a |1⟩:  [

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

] 

 Swap two qubits (SWAP): [

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

] 

 Toffoli gate (CCNOT): Controlled-Controlled-Not. Operates on 3 qubits 
 

In addition, several non-unitary and parameterized gates are provided: 
 

 Measurement (M): Measures the first qubit in the list and collapses its state 

to one of |0⟩ or |1⟩ (bit values Zero or One) with probabilities based on 
the state before measurement. 

 Reset (Reset Bit): Take a measured Qubit and re-animate it as a Qubit 

with state of |0⟩ or |1⟩ based on Bit value provided. 

 Restore (Restore): Take the first qubit in the list (which must be measured), 
get its Bit value and uses that to do a Reset. 

 Label (Label string) will place a label in the circuit on the head qubit at 
this point in time. There are several variants of this gate, The variants are  of 
the form: Label<typ>, where <typ> is one of: 

o U - float the label upward 
o D - float the label downward 
o L - float the label left (used at beginning of circuits) 
o R - float the label right (used at end of circuits). 
o C - float the label to the center of the wire 
o CD - float the label to the center and down 
o Raw - outputs raw LaTeX at this point 

 Native (Native (Qubits->unit)): Apply the native function at this point 
in the circuit. This allows for native code to be applied at any desired point 
even after functions have been compiled to circuits. This is especially useful 
for saving intermediate values and debugging. 

 Native Debug (NativeDbg (Qubits->unit)): Same as Native but doesn’t 
show up in Circuit diagrams. 

 Bit Control  (BC gate). This gate reads the first qubit in the list (which must 
be measured). If it’s a One then apply gate to the remaining qubits in the 
list. 

 Arbitrary Bit Control (BCany gate). This is the same as the BC gate except 
that it takes a count of how many classical bits to use (measured qubits) and 
a function that will receive the qubits and return a Boolean on whether or 
not to execute the quantum gate. 



S E R I O U S  C O D I N G  

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

37 

 Adjoint (Adj gate): Take the unitary matrix in gate and performs an adjoint 
operation on it before applying the matrix to the qubit list. This only works 
if the provided gate is defined by a unitary matrix (of course). 

 Control gate (Cgate gate). This may be thought of as the quantum 
equivalent of BC. Take the matrix in gate and expand it to include a control 
line. Then apply the resulting gate to the qubit list. For example: Cgate X is 
the same thing as CNOT. 

 Control Control gate (CCgate gate). Take the matrix in gate and expand 
it to include two control lines. Then apply the resulting gate to the qubit list. 
For example: CCgate X is the same thing as CCNOT. 

 Transverse Gate (Transverse). Take any other gate and convert it into its 
transverse equivalent (for QECC). 

 Transverse Binary Control (T_BC). Convert a binary control gate into its 
transverse equivalent (for QECC). 

 
There are also sets of specialized gates. The largest set is for Hamiltonian operations 
(these are in the model HamiltonianGates): 
 

 Couple two 𝜎𝑧 operations (ZZ). 

 Rotated Pauli (Rpauli). Takes a Pauli gate (X,Y,Z) and rotates it to an 

arbitrary angle (𝑅𝑥, 𝑅𝑦, 𝑅𝑧). 

 Rotate a Pauli Z and ZZ (ZR, ZZR). This is just a short-hand version. 

 Rotate phase by arbitrary angle (Ttheta). 

 Rotate global phase by an arbitrary angle (Gtheta). 

 Flip the current qubit basis from Z to Y or back (Ybasis, YbasisAdj). 

 Rotate around Z, Y or X in the natural units (Rz, Ry, Rx). 

 Controlled versions of above (CRz, Cry, CRx, CTtheta, CGtheta). 

 Use CNOTs to entangle/unentangle across any number of qubits (Entangle, 
UnEntangle). This is for implementing Jordan-Wigner strings. 

 
There are also a few specialized gates for Joint Measurement operations (used in 
braiding circuits for Majorana Fermions). See the sample in Joint.fsx for details: 
 

 Joint measure in the Z basis (JMz). This gate take a symbol name to store 
the result in (since it isn’t local to any one qubit) and a list of qubits to 
perform the joint measurement on. 

 Joint measure in the X basis (JMx). 

 Joint measure in multiple basis (JM). This op takes a string of basis values 
“xyz” that match up 1-to-1 with the qubit list you provide. 

  Parity Control (PC). This gate takes the results of previous joint 
measurements and decides whether to apply a gate (like BC). It takes a label 
(to put on drawings to show the formula used), a function to compute the 



S E R I O U S  C O D I N G  

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

38 

desired Boolean operation in addition to the gate to control and the qubit 
list.  If we wanted to check if two previous measurements were not equal, 
and if so, apply an X gate, we could do (from Joint.fsx): 
 
      PC "p1<>p3" (fun qs -> k.Symbol "p1" <> k.Symbol "p3") X [t] 

 

Gate and Qubit Operators 

Shortcuts that help 

ome manipulations of Gates and Qubits are done on a regular basis and 

therefore LIQ𝑈𝑖|⟩ provides some short-hand F# operators to make these 
various function easier: 
 

The map operator (><) takes a Gate function and a list of 
Qubits and applies the Gate to each Qubit in turn. For 

example: H >< qs will perform a Hadamard operation on each of the qubits in qs  
 

The argument map operator (>!<) takes a Gate function and 
a tuple of arguments and Qubits and applies the Gate (with 

the provided argument) to each Qubit in turn. For example, the following two 
syntaxes are available: 
 
    Label >!< (["q0";"q1";"q2"],qs) 
    Label >!< ("|0>",qs) 
 

Example 36: Map with arguments operator 

The first will place a label on each of three qubits. The second will put the same 
label on all the qubits in the list. 
 

The build operator (!!) will take various arguments and turn 
them into a legal Qubit list. Here are some examples: 
 
    !!k   // When k is a Ket 
    !!q   // When q is a Qubit  
    !!(q,q)   // Two qubits 
    !!(q,q,q)   // Three qubits 
    !!qs   // Qubit list 
    !!(qs,qs)   // Two qubit lists 
    !!(qs,qs,qs)   // Three qubit lists 
    !!(qs list)   // List of qubit lists 
    !!(qs,q)   // Qubit list and a qubit 
    !!(q,qs)   // Qubit and a qubit list 
    !!(qs,i)   // Take qubit i from qubit list 
    !!(qs,i,j)   // Take qubits i,j from qubit list 

S 
>< Apply operator to 

qubits 

>!< Apply operator to 

qubits with argument 

!! Build a qubit list 



S E R I O U S  C O D I N G  

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

39 

    !!(qs,i,j,k)   // Take qubits i,j,k from qubit list 
    !!(qs,is)   // Take qubits in is list from qubit list 
    !!(qs,i)   // Pull out qubit i and turn into a list 
    !!(qs,i,j)  // Make a list from qubits i and j 
    !!(qs,i,j,k)  // Make a list from qubits i,j and k 
    !!(qs,idxs)  // Make a list from qubits with idxs list 
 

Example 37: Build a Qubit list operator 

The extract gate operator (!<) will call a Gate function, ask it 
for the underlying Gate and return the data structure. This is used when defining 
parent gates in custom gate functions and during gate mapping (e.g., implementing 
Quantum Error Correction Codes). 
 

!< Get Gate 



E X T E N D I N G  T H E  S I M U L A T O R  

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

40 

Extending the Simulator 

IQ𝑈𝑖|⟩ has been architected to allow extensions in several different 
directions. At the bottom Gates may be defined (or re-defined), Circuits may 
be re-written, modules may be added including new simulation, rendering, 
optimization and export engines. We’ll start with gate definitions and work 

our way up. 
 

Custom Gates 

What can I create? 

ustom Gates are defined by the user in the identical way that built-in gates 
were defined by the system. Indeed, no gates are actually “built-in”, they 
are just defined as a convenience to the user. We will walk through several 
of the built-in gates as an example of how to define your own gates. 

 
A distinction should be made between the Gate data structure and gate functions 
(also called Operations). The latter is an F# function that will carry out the definition 
of the Gate that it contains. The reason for this separation is that it allows us to call 
Operations in multiple modes (Run, Circuit and Gate) that perform different desired 
behaviors. All the Gates we define will always be wrapped in Operations so that 
they may be used in any mode desired. The Gate structure itself looks like this: 
 

type Gate(  ?Name:string, 
            ?Qubits:int, 
            ?Mat:CSMat, 
            ?Draw:string, 
            ?Help:string, 
            ?Op:GateOp, 
            ?Parent:Gate option)   
 

Example 38: Gate constructor 

Chapter 

5 

L 

C 



E X T E N D I N G  T H E  S I M U L A T O R  

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

41 

Many fields are optional depending on the type of gate being implemented. Here is 
what each one means: 

 Name: Name of the gate (used in output functions for printing and drawing). 
Typically, this is always specified 

 Qubits: Arity of the gate. This must be specified if there is no associated 
unitary matrix (i.e., if it can’t be determined from the other parameters). 

 Mat: unitary matrix. Not needed if the type of Op doesn’t require it. 

 Draw: Drawing instructions for circuits (discussed in detail later) 

 Help: Information for a user of this Gate to understand it 

 Parent: What gate we’re based on (if any) 

 Op: GateOp for this gate (default s to Normal) and  must be one of: 
o Normal: Standard unitary operator 
o Measure: Measurement on first qubit 
o Reset(Bit): Re-create a Qubit from a Bit. If the provided bit = 

Unknown then use the current digital value of the qubit as the value 
to re-constitute. 

o String: Used by Label gates (just for drawing) 
o Modify(n): Create a new gate with an additional n qubits at the 

front. Used for Adjoint and Control gates. Requires Parent field to 
be specified 

o BCOp(n,op): Binary control on n qubits (at front of list). Hand op 
the qubits and let it classically decide if we should execute the 
Parent gate on the remaining qubits (if it returns true).  

o WrapOp(op): Wrap other gates into one meta-gate 
o WrapHam(pqrs,op): Represents a second quantized Hamiltonian 

term with PQRS spin orbitals. 
 
We’ll now walk through each of the GateOp types and show how they are defined. 
 

This is the gate type that defines normal unitary operations. 
We’ll show the CNOT gate as a first example (because it 

requires more than one Qubit) and then give a few examples of parameterized gates. 
The Qcircuit like drawing instructions will be explained in the section on Rendering. 
 
The full code for CNOT follows: 
 
let CNOT (qs:Qubits) = 
    let gate = 
        Gate.Build("CNOT",fun () -> 
            new Gate( 
                Name    = "CNOT", 
                Help    = "Controlled NOT", 
                Mat     = (CSMat(4,[(0,0,1.,0.); (1,1,1.,0.); 

 (2,3,1.,0.); (3,2,1.,0.)])), 
                Draw    = "\\ctrl{#1}\\go[#1]\\targ" 
        )) 
    gate.Run qs 

Normal Basic kind of 

Gate 



E X T E N D I N G  T H E  S I M U L A T O R  

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

42 

 
Example 39: CNOT Gate implementation 

At the inside of the function is the actual Gate structure (new Gate(…)). You’ll 
notice that it has the fields we already described. We need to explain the Mat entry 
further (Draw will await a separate section on rendering circuits). Matrices in 

LIQ𝑈𝑖|⟩ are defined to be Square, Complex and Sparse (hence CSMat). The 
constructor used is fairly straight forward. The first argument is the size of the 

matrix N (𝑁 = 2𝑘 where k is the number of qubits), defining an NxN matrix. The 
second argument is a list of non-zero entries in the form: (row, col, real, imaginary). 

In this case, we’ve defined CNOT as: [

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

] 

 
Next out, is a call to Gate.Build(…). This call is optional, but should be used 
whenever possible. A global cache of gates is maintained for efficient memory usage 
and quick initialization. By calling Gate.Build(…) with a unique key (usually the 
name of the gate with any unique parameters), the gate creation function is only 
called once and from then on is looked up in a dictionary. The function cannot be 
used if the gate created could be different on each instantiation (for instance, 
changing binary values). It is most useful for fixed unitary matrices. 
 
The outer most section of the function calls the gate we just created with gate.Run 
qs. This allows the runtime to choose the mode to call the gate in (Run, Circuit or 
Gate) dynamically and completes the definition of the gate function (or Operation).  
 
 

The measure operation takes two parameters (name,joint). If 
joint is the empty string, then this is a normal (destructive 

measurement). Otherwise, name is where we will put the result in the state symbol 
table and joint is the string of basis measurements (“xyz”) that we wish to jointly 
perform.  
 
The Draw parameter typically uses a built-in shortcut to generate the picture of a 
meter. The actual code used for measure is: 
 

let M (qs:Qubits) =  
    let gate = 
        Gate.Build("M",fun () ->  
            new Gate( 
                Name    = "Meas", 
                Help    = "Collapse State", 
                Mat     = CSMat(2), 
                Draw    = "\\meter”, 
                Op      = Measure("","") 
        )) 
    gate.Run qs 
 

Measure Measurement 

of a qubit 



E X T E N D I N G  T H E  S I M U L A T O R  

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

43 

Example 40: Measurement Gate definition 

All variations of this operation are covered by the Reset 
and the Restore Gate functions. However, it might be 

instructive to show the Reset definition since it’s our first example of a 
parameterized gate function: 
 
let Reset (b:Bit) (qs:Qubits) = 
    let gate (b:Bit) = 
        let key = "Reset" + b.v.ToString() 
        Gate.Build(key,fun () ->  
            new Gate( 
                Name        = key, 
                Help        = "Re-create qubits with " + key, 
                Mat         = CSMat(2), 
                Draw        = "\\gate{\\ket{"+b.v.ToString()+"}}", 
                Op          = Reset b 
        )) 
    (gate b).Run qs 
 

Example 41: Reset Gate definition 

Note that we now have a Bit value (b) that has to be passed down through the 
definition (along with the input qubits (qs) of course). You can also see that the 
key, Name, Help and Draw fields are all parameterized by the bit value. 
 
Restore is simpler, because it requires no parameters: 
 
let Restore (qs:Qubits) = 
    let gate = 
        Gate.Build("Restore",fun () ->  
            new Gate( 
                Name        = "Restore", 
                Help        = "Restore qubit to measured value", 
                Mat         = CSMat(2), 
                Draw        = "\\gate{\\ket{M}}", 
                Op          = GateOp.Reset Unknown 
        )) 
    gate.Run qs 
 

Example 42: Restore Gate definition 

Modify is worth a couple of examples. In the first, we just want 
to change the definition of a parent gate. In this example, we’ll 

take the adjoint of the gate we’re given as a parent: 
 
let Adj (f:Qubits->unit) (qs:Qubits) = 
    let gate (f:Qubits->unit) (qs:Qubits) = 
        let parent      = !< f qs 
        let pMat        = parent.Mat 
        if pMat.Length = 0 then 
            failwithf "Adj can't control parent %s, no matrix "  
                                            parent.Name 

Reset Turn a bit into a 

qubit 

Modify change a parent 

gate 



E X T E N D I N G  T H E  S I M U L A T O R  

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

44 

        Gate.Build("Adj_" + parent.Name,fun () -> 
            new Gate( 
                Name    = sprintf "%s'" parent.Name, 
                Help    = sprintf "Adjoint of %s" parent.Help, 
                Draw    = DrwAST.Morph(parent.Draw, 

fun (str:string) -> str + "^\\dagger"), 
                Op      = Modify 0, 
                Mat     = pMat.Adj(), 
                Parent  = Some parent 
            )) 
    (gate f qs).Run qs 
 

Example 43: Adjoint Gate defintion 

There are a few new items to note. The parameter to this gate function is another 
gate function (f). From the gate function (Operation), we need to discover the actual 
Gate. This is done with the extract gate operator (!<). Everything else is pretty 
straight forward (including creating unique keys and names). The new matrix is 
created from the adjoint of the parent’s matrix (pMat.Adj()). We also need to store 
away the parent we discovered in the Parent field (Some parent). For this gate, our 
operation is Modify 0 which means that we are not adding any additional wires to 
the parent, just transforming it. 
 
A Control Gate is an example where we want to operate on more qubits than the 
Parent needs. This is a more complicated gate, but still fairly straight forward. The 
main difference is the need to actually build an entirely new matrix based on the 

parent matrix. To make this easy, LIQ𝑈𝑖⟩ adds a function to build it for you: 
 
let Cgate (f:Qubits->unit) (qs:Qubits) = 
    let gate (f:Qubits->unit) (qs:Qubits) = 
        let parent      = !< f qs 
        parent.AddControl() 
    (gate f qs).Run qs 
 
 

Example 44: Control Gate definition 

AddControl creates a matrix twice the dimension of the parent matrix, fills in the 
diagonal of the new entries with 1s and copies the values from the old matrix into 
the lower right of the new one. This gives us a generalized gate that can take any 
unitary gate of any arity and create a controlled version (very powerful). There is 
also a version (CgateNC) that requests that the gate not be cached (useful for 
Hamiltonians with many different angles). 
 

The bit controlled gate is a special case because classical values 
need to be manipulated at simulation-time and then quantum 

operations need to be performed based on these bits. There are two main uses for 
this GateOp. The first is to perform classical functions within a circuit (possibly for 
debugging or saving of information)… but without the application of a quantum 
gate as a result. An example of this is the Native gate function: 

BCOp Bit Controlled 

operation 



E X T E N D I N G  T H E  S I M U L A T O R  

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

45 

 
let Native (f:Qubits->unit) (qs:Qubits) = 
    let gate (f:Qubits->unit) = 
        new Gate( 
            Name        = "Native", 
            Help        = "Run native code in the circuit", 
            Mat         = CSMat(2), 
            Draw        = "\\gate{Native}", 
            Op          = BCOp(0,(fun (qs:Qubits) -> f qs;true)) 
        ) 
    (gate f).Run qs 
 

Example 45: Native Gate definition 

The looks pretty much like the previous gates with a couple of exceptions: 
1. The operator says that it needs 0 binary Bits and just calls the provided 

function (f) with all of the qubits available (qs). This allows classical code 
to look at the Ket, do operations outside of the quantum simulation (like 
print out status) and then return. 

2. The matrix is specified as CSMat(2) which is a dummy because it never gets 
used. 

3. The Parent entry is never specified.  This guarantees that we won’t call 
another gate. 

 
The other main use is as an actual binary controlled gate: 
 
let BC (f:Qubits->unit) (qs:Qubits) =  
    let gate (f:Qubits->unit) (qs:Qubits) = 
        let parent          = !< f qs 
        let op (qs:Qubits)  = qs.Head.Bit = One 
        new Gate( 
            Name    = "BitContol", 
            Help    = "Bit control Qubit operator", 
            Qubits  = 1 + parent.Arity, 
            Draw    = "\\control\\cwx[#1]", 
            Op      = BCOp(1,op), 
            Parent  = Some parent 
        ) 
    (gate f qs).Run qs 

 
Example 46: Binary Control Gate definition 

Here we actually eat up one qubit (BCOp(1,op)) and the op just looks to see if the 
first qubit is a One (qs.Head.Bit=One). Now the parent gate is called if this 
function returns true. You’ll also note that neither of these gates use 
Gate.Build(…). The reason is that they aren’t cacheable because they can do 
unpredictable things at run time (classical operations that are not under the control 
of the simulation system). 
 

The last operation allows for wrapping of lower level gates 
into higher (more abstract) ones. There are two reasons to do 

this. The first is to create a “macro” that allows a single gate to be called (logically) 

WrapOp create a meta-

gate 



E X T E N D I N G  T H E  S I M U L A T O R  

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

46 

from many places in your circuit. The second is to provide an abstraction for circuit 
drawing. One of the options on drawing is how far to “unwrap” the circuit. This 
allows for high level views of your circuit without seeing the possibly thousands of 
gates underneath. 
 
Here’s an example of the adjoint of a controlled rotation gate as a WrapOp Gate: 
 
let CRAdj (k:int) (qs:Qubits) =  
    let gate (k:int) (qs:Qubits)    = 
        Gate.Build("CR'_" + k.ToString() ,fun () -> 
            new Gate( 
                Qubits  = qs.Length, 
                Name    = "CR'", 
                Help    = "Controled R' gate", 
                Draw    = sprint "\\ctrl{#1}\\go[#1]\\gate{R%d^\\dagger}"       
                              k, 
                Op      = WrapOp (fun (qs:Qubits) ->  
                              Cgate (Adj (R k)) qs) 
        )) 
    (gate k qs).Run qs 
 
 

Example 47: Wrap Gate Implementation 

The operations done (WrapOp) could be as complicated as desired with hundreds of 
gates involved. The only restriction is that the whole gate may only operate on the 
qubits that it’s provided (of course).  
 

Rendering 

Drawing pretty circuits 

ates contain a field that directs how a circuit containing the gate will 
represent it (Draw). In this section we’ll give a short overview of the 
rendering instructions that are available to the user when building custom 
gates.  

 
The Draw field itself is just a list of drawing instructions to use patterned after 
Qcircuit (see http://www.cquic.org/Qcircuit/ for more information) which is a 
LaTeX wrapper for the XY-pic package. The current implementation is a complete 
re-write based on the TikZ drawing package but retains some of the “feel” of 
Qcircuit.  
 

G 

http://www.cquic.org/Qcircuit/


E X T E N D I N G  T H E  S I M U L A T O R  

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

47 

The file LiquidTikZ.tex in the samples directory contains the full quantum 
drawing package and should be placed at c:\Liquid\LiquidTikZ.tex so that it can 
be found by the .tex files generated from LIQ𝑈𝑖|⟩. If you’d like to see the capabilities 
of the drawing package, go into the LiquidTikZ.tex file and change the line: 
 

\iffalse % Sample Drawings 
 

 to \iftrue and compile. The result (provided in samples as LiquidTikZ.pdf) shows 
several circuit drawings. Here’s one of the examples showing a QECC circuit with 
bending vertical wires to show where they go: 
 

Figure 10: Sample drawing from LiquidTikX.tex 

 
When called in a gate, the drawing cursor is placed on the wire representing the first 
qubit in the list at the current time step in the circuit. Each of the legal elements for 
this list will be described in detail. The output of a drawing request is either an SVG 
file (if the file extension is .htm) a LaTeX file (if the file extension is .tex) or both 
(when calling the RenderHT function) containing the drawing instructions. SVG files 
can be opened with a number of applications (including your Internet Browser) and 
TeX files may be used in LaTeX documents (provided you include the 
LiquidTikZ.tex file). 
 

The \gate{string} command takes a string and draws it on 
the circuit diagram with a box around it. The string must be a 

legal TeX text string and may contain TeX math symbols (e.g., ^\dagger which 

becomes † as a superscript) and commands (e.g., \ket{0} which becomes |0⟩ 
 

The \lstick{string} command draws the string on the 
circuit at the left of the current column. Variations include: 

gate draw a gate on the 

circuit 

lstick draw text on the 

circuit 



E X T E N D I N G  T H E  S I M U L A T O R  

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

48 

rstick, ustick, dstick, cstick, cdstick and raw. See the description of Label 
in Built-in Gates 
 

The \multigate{#1}{string} command draws a gate that 
spans multiple wires. The numeric argument should be 

specified as the wire number where the bottom of the gate resides. For example if 
the gate is three wires long, then referencing \multigate{#2}{U_a} will create a gate 

3 wires high (wires 0, 1 and 2) with 𝑈𝑎 as its name. 
 

The \control command draws a closed circle on the circuit. 
For an open circle, use \controlo. 
 

The \qwx[#1] command draws a vertical line to the 
numbered wire (always specify the #). For a classical (double) wire, use 

\cwx[#1].LIQ𝑈𝑖|⟩ also provides a \dwx[#1] to draw dotted lines. In general, 
there is no need to draw horizontal lines (\qw, \cw or \dw) since they will be 
inserted automatically. 
 

The \ctrl{#1} command draws a closed circle on the 
circuit and then a vertical line to the numbered wire (always 

specify the #). For an open circle, use \ctrlo. 
 

The \targ command puts a ⊕ on the current wire (target of 
a ctrl). 

 
The \qswap command puts an X on the current wire (target 
of a quantum swap). 

 
The \meter command puts a measurement meter on the 

current wire and converts the wire to digital (double line). 
 

The \go[#1] command will move the drawing cursor to a 
specific wire in the list of qubits the gate operates on (starting 

with 0).  Subsequent commands will refer to that wire until another \go command 
is given. For example, to go to the second wire of a CNOT, you would specify: 
\go[#1]. Before the first drawing command, an implicit \go[#0] is performed. 
 
Here’s what the drawing instructions for CNOT look like: 
 

Draw    = "\\ctrl{#1}\\go[#1]\\targ" 
 

Example 48: CNOT Render instructions 

Implicitly move to wire 0, draw a filled circle and a vertical line from wire 0 to wire 

1. Then move to wire 1 and draw a ⊕. 

multigate draw a 

multiline gate 

control draw a circle 

qwx draw a vertical line 

ctrl draw a circle and a 

vertical line 

targ draw a mod 2 

addition symbol on a wire 

qswap draw cross on a 

wire 

meter draw an meter 

go positions the drawing 

cursor 



E X T E N D I N G  T H E  S I M U L A T O R  

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

49 

 
Several rendering helper functions have also been defined to make common 
operations easy and efficient: 
 

The DrawAST.Morph(string,strFunc) command takes two 
arguments: a string of drawing instructions (typically from a 

parent Gate) and a function that maps one string into another. In the Adj Gate 
shown above changes all of the string parameters to commands in the parent gate 

with the same name followed by a superscripted dagger (†). 
 
Draw instructions Wrap gates are handled a little differently. If we’re at the lowest 
level that we’re going to draw, then the drawing instructions for this gate are 
executed. If we are going to go further (inside the wrapper), then we ignore these 
drawing instructions and instead proceed to the drawing instructions of the inner 
gates. This allows us to render circuits at various levels of abstraction. 
 
Here’s an example of a set of drawing instructions for the Hpq Hamiltonian gate: 
 
            Draw    = "\\ctrl{#1}\\go[#1]\\multgate{#2}{Hpq}", 
 
 

Example 49: Rendering Wrap gates 

Here we’ll draw a closed circle on the wire 0 and then a vertical line to wire 1 (control 
from a phase estimation qubit). Then we move to wire 1 and draw a multiple qubit 
gate around qubits #1 to #2. Note that in an actual circuit, these qubits could be far 
apart and the box might be many qubits high. 
 

Asking for a high level view, here’s what the circuit for 𝐻2 looks like (which utilizes 
some of the Hp__ variants in HamiltonianGates: 
 

 
 

Figure 11: Rendering of a complex circuit (high level) 

 
Here’s the detailed rendering: 

Morph re-write 

instructions 



E X T E N D I N G  T H E  S I M U L A T O R  

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

50 

 

Figure 12: Rendering of a complex circuit (low level)

 
 



C I R C U I T  M O D E  

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

51 

Circuit Manipulation 

Optimization  

ircuit mode has been touched on a few times earlier in this document. We 
will now go over the various options in detail and then move into 
optimizations and alternative simulation engines that can be used with 
circuits. 

 
Once an algorithm has been defined as a function, it may be converted to a Circuit 
by simply asking for a circuit compilation: 
 
    let ket     = Ket(3) 
    let circ    = Circuit.Compile teleport ket.Qubits 
 

Example 50: Compiling a Circuit 

A set of Qubits from a Ket vector must be provided so the Circuit has context of 
what qubits are needed and how they are used by the Gate functions (Operations). 
In this case we’ve taken the teleport function and converted it to a Circuit data 
structure. Elements of the Circuit data type include: 
 

Seq(Circuit list) represents an ordered list of Circuits to 
execute one after the other. 
 

Par(Circuit list) represents a parallel set of Circuits to 
execute at the same time. Optimizers generate this from Seq when there are no over-
lapping qubits touched between multiple operations (e.g., the Fold() command). 
 

Apply(Gate,Wires) instructs the system to apply a Gate to a 
set of wires (wires = Qubit ids). Wires are mapped back to 

actual Qubits before the Gate is called. 
 

Chapter 

6 

C 

Seq Sequence of Circuits 

Par Parallel set of Circuits 

Apply do a standard gate 

operation 

Ext extends the function 

of a Gate 



C I R C U I T  M O D E  

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

52 

Ext(Gate,Wires,Circuit) applies a new version of a Gate that was derived from 
another gate (the sub-Circuit in the argument list). A typical example would be 
taking the adjoint of another gate. 
 

BitCon(Gate,Wires,Func,Circuit) runs the Func (that must 
return a Boolean value). If the value is true, then call the sub-

Circuit.  
 

Wrap(Gate,Wires,Circuit) allows meta-gates to be 
represented. This is especially useful for drawing circuits with 

varying levels of resolution. The sub-Circuit is usually a Seq or Par circuit 
representing multiple Gates. 
 

Empty allows for a representation of a Circuit that has no 
elements. It is usually a place holder that is removed when an actual circuit starts 
being built. It may be thought of as a noop. 
 
Once we have a Circuit several useful function are immediately available: 
 

1. Dump: Dump allows a circuit to be printed to the console and/or the log. 
This is useful for both debugging and export to other simulation 
environments (see Example 13: Dump of Teleport Circuit). 

2. FindIDs(detail): Given a detail level (0=least), get a set of Qubit ids that 
are used by the circuit and total time steps necessary to execute the Circuit. 

3. Render(file:string,?typ:string,?detail:int,?split:float, 

?scale:float): Draw a diagram for the Circuit into a file. 
4. RenderHT(file:string,?detail:int,?split:float,?scale:float): Call 

render for both svg and tikz output files (leave off extension). 
5. Fold(?aggressive): Convert Seq entries to Par entries where possible. This 

has the effect of sliding the Circuit elements to the left (useful to call before 
Render()). If you set aggressive=true then the entire circuit is flattened 
before parallelizing. This won’t be as pretty for drawing, but will give much 
better estimates of the actually depth count of the circuit. 

6. GateCount(?doParallel): How many low level gates are there in the 
Circuit? If you want to overlay parallel circuits (doParallel), you should 
call Fold(true) first to get the most accurate count. 

7. Run(Qubits): Run the Circuit in the same way the original function (that 
it was compiled from) would have run. This becomes powerful after 
optimizations to the Circuit have been performed, or Gates have been 
substituted based on architectural or error considerations. 

8. Grow(…): The most sophisticated of the built-in Circuit functions. We will 
describe this function in detail next. 

 
The family of Circuit functions that perform optimizations are all wrapped 
together under the Grow(Ket,GrowPars) function. This operation will take a 

BitCon represents binary 

control gates 

Wrap meta gate that 

wraps a list of other gates 

Empty dummy Circuit 



C I R C U I T  M O D E  

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

53 

Circuit and re-write it for optimal execution. On a large circuit (hundreds of 
thousands of gates), reductions in gate count of 100:1 are easily achievable (with 
massive execution speed-ups). The Ket argument is only used for bookkeeping. 
 
The GrowPars argument is usually created in one of two modes: 
 
1. Gates: GrowPars(?maxWires,?verbose,?allowDense) will create an 

optimized Circuit from any other Circuit: 
a. maxWires: How many wires can be used in a single grown gate, the 

default of 11 is a fairly optimal value. 
b. verbose: Whether to report on what was done. 
c. allowDense: In most cases we don’t want big dense matrices, but 

for some simulations we may want to force this to happen. 
2. Single Unitary: 

GrowPars(half,?eCnt,?oCnt,?skip,?diff,?verbose,?parity, 

?redund,?colaesce) will generate highly optimized circuits for 
Hamiltonian circuits (only): 

a. half: For the qubits representing electrons, are spin-up the first half 
of the qubits vs. interleaved (up,down). 

b. eCnt: How many electrons are there? 
c. oCnt: How many orbitals are there? 
d. skip: How many of the initial qubits are not electrons (ancilla, e.g., 

phase estimation qubits). 
e. diff: What is the required difference between up and down spin 

counts ([]=no restriction, otherwise a list of allowable differences). 
f. verbose: Report on what was done? 
g. parity: Force row and column parity to match? This forces 

conservation of angular momentum 
h. redund: Force removal of redundant gates (like an X following an X 

or two sequential CNOTs on the same wires). 
i. coalesce: Force coalescing of small angles across Trotterization 

steps. This is a tuple of (size,keep) where size is the limit of small 
angles and keep is whether to keep them. 

 
Each of the restrictions specified in GrowPars affects how optimal the final 
output is. In the case of Hamiltonian Circuits, this can a massively complex 
circuit and turn it into one that is easily simulable. 



C I R C U I T  M O D E  

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

54 

QECC: Quantum Error 

Correction Codes 

Adding faults and fault tolerance 

ow that we have Circuits to manipulate, one the most useful things we can 
do is apply a transformation to the circuit that makes it fault-tolerant, add 
faults (via injected Gates) and then test the result (to see how fault tolerant 
the circuit really is). The problem we need to solve is allowing the user to 

create their own fault tolerant circuitry (extending LIQ𝑈𝑖|⟩) in such a way that all the 
other tools in the system are still available. That is what the QECC class is all about. 

We refer the user to other sources on Quantum Error Correction Codes and their theory, 
but suffice it to say that there is a basic strategy we will follow for all implemented QECC 

inside of LIQ𝑈𝑖|⟩: 

1. A Circuit to test will need to be re-written where each original Qubit (called a 
logical qubit) will need to be replaced with a set of Qubits (called the physical 
qubits). 

2. These physical qubits will need to be “prepared” in a logical |0⟩ state (given the 
code under investigation) via a provided Gate. 

3. Each of the original Gates will need to be replaced with Gates that operate on 
a set of physical qubits which represent the logical qubits. 

4. The QECC of a logical qubit will need to be measured, analyzed and fixed with 
a circuit known as the “syndrome” Gate. 

5. After measurement, the QECC will need to be decoded from a set of physical 
qubits back to a logical qubit by doing classical error correction. This will be 
known as the Decode function. 

6. Errors can be introduced in many ways. LIQ𝑈𝑖|⟩ provides a simple model of a 
de-polarizing channel that will insert X, Y or Z gates on any physical qubit with 
a user provided probability. 

Besides the new class, we also provide two new gates that are useful in a number of 
codes: 

N 



C I R C U I T  M O D E  

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

55 

The Transverse gate will take an input gate and create a new 
version (via the Wrap operation) that performs the same 
operations on each of the physical qubits that make up a 

logical qubit. For example, Transverse 7 X will create a version of the X gate on 7 
physical qubits. 
 

The T_BC gate is a pre-built version of the BC gate that allows 
a logical binary control of other logical qubits (using transverse 

encoding). The reason that this gate is special (and can’t be implemented with 
Transverse is that the binary control needs to be Decoded with a QECC specific 
function (turning the set of physical qubits back into a logical qubit that can be 
checked against Zero and One).  
 
QECC itself is an abstract class that needs specific elements (added by the user) to 
turn it into a code that may be simulated. We’ll walk through the definition of a 

specific CSS code (Steane [[7,1,3]]) which is provided with LIQ𝑈𝑖|⟩.  
 
First, we need to derive our code implementation from QECC. The base class requires 
the number of “scratch” qubits we want (called Ancilla, which are typically used for 
syndrome measurement and control) as well as the number of physical qubits that 
make up a logical qubit. In addition, we need to provide the Circuit that we want 
to convert from standard to fault tolerant: 
 

type Steane7(tgt:Circuit) = 
    inherit QECC(6,7,tgt) 
    let aCnt    = 6 
    let cCnt    = 7 
 

Example 51: Steane7 constructor definition 

When we decode measured values, we’ll need to know what the legal 
representations of a logical 0 and logical 1 are: 
 
    // Here are the logical 0 and 1 codes (for decoding) 
    let logical0 = [0x00;0x55;0x33;0x66;0x0F;0x5A;0x3C;0x69] 
    let logical1 = List.map (fun c -> c ^^^ 0x7F) logical0 
 

Example 52: Logical values for Steane7 

The first Operation we need is the one that prepares a set of physical qubits into a 

logical |0⟩ qubit: 
 
    /// Prep gate for Steane7 
    let prep (qs:Qubits) = 
        let nam = "S7_Prep" 
        let nam2= "S7\nPrep" 
        let gate (qs:Qubits)    = 
 
            // Create logical |0> prep circuit 
            let op (qs:Qubits)  = 

Transverse 

implements a default QECC 
version of another gate 

T_BC Transverse version 

of Binary Control 



C I R C U I T  M O D E  

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

56 

                let xH i    = H [qs.[i]] 
                let xC i j  = CNOT [qs.[i];qs.[j]] 
 
                xH 6;   xC 6 3; xH 5;   xC 5 2; xH 4 
                xC 4 1; xC 5 3; xC 4 2; xC 6 0; xC 6 1 
                xC 5 0; xC 4 3 
 
            Gate.Build(nam,fun () -> 
                new Gate( 
                    Qubits  = qs.Length, 
                    Name    = nam, 
                    Help    = "Prepare logical 0 state", 
                    Draw    = sprintf Error! Hyperlink reference not valid. 

 (qs.Length-1) nam 
                    Op      = WrapOp op 
            )) 
        (gate qs).Run qs 
 

Example 53: Steane7 preparation Gate 

This looks just like the Gates we’ve seen before. It’s made up of a bunch of  
Hadamard and CNOT gates. The Circuit for it looks like this: 

  

Figure 13: Steane7 Prep Circuit 

What this Circuit does is create a superposition of all the legal codes for a logical |0⟩ 
state. 

Next we need to provide the syndrome measurement, decode and fix Gate this is a very 
complicated Gate and much of the detail will not be discussed here (see the references 
from the Introduction for more details). However, let’s get a flavor for the “fix” section: 

 
    // Fix up a syndrome measurement 
    let fix (syn:int) (f:Qubits->unit) (qs:Qubits) = 
        let nam             = "S7_Fix" 
        let gate (syn:int) (f:Qubits->unit) (qs:Qubits) = 
            let parent          = !< f qs 
            let op (qs:Qubits)  = 
                let b0  = qs.[0].Bit.v 
                let b1  = qs.[1].Bit.v 
                let b2  = qs.[2].Bit.v 



C I R C U I T  M O D E  

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

57 

                let bs  = (b0 <<< 2) + (b1 <<< 1) + b2 
 
                // If we match the syndrome, then do the parent 
                bs = syn 
 
                else false 
            new Gate( 
                Name    = nam, 
                Help    = "Fix syndrome measurements", 
                Draw    = sprintf "\\cwx[#3]\\control%s\\go[#1] 

\\control%s\\go[#2]\\control%s" 
                            (if syn &&& 4 <> 0 then "" else "o") 
                            (if syn &&& 2 <> 0 then "" else "o") 
                            (if syn &&& 1 <> 0 then "" else "o") 
                            , 
 
                Op      = BCOp(3,op), 
                Parent  = Some parent 
            ) 
        (gate syn f qs).Run qs 
 

Example 54: Fix a detected error in Steane7 

This Gate is a binary controlled operator (BCOp) that reads 3 Ancilla, decodes them, sees 
if they represent the specific syndrome we’re looking for… and if so, applies the Parent 
Gate we were handed (f). It is called 7 times for possible X flips (Ancilla representing 
errors 1-7) and 7 more times for possible Z flips. The parent Gate that does this is: 

    // Syndrome measurement 
    let synd (qs:Qubits) = 
        let nam = "S7_Syn" 
        let nam2= "S7\nSyn" 
        let gate (qs:Qubits)    = 
 
            // Syndrome ops (assume first 6 qubits are ancilla) 
            let op (qs:Qubits)  = 
                let xH  i           = H [qs.[i]] 
                let xXs i js        =  
                    for j in js do 
                        CNOT [qs.[i];qs.[j]] 
                let xZs i js        =  
                    for j in js do 
                        Cgate Z [qs.[i];qs.[j]] 
                let xM  i           = M [qs.[i]] 
                let xFX syn i       = fix syn X !?(qs,[3;4;5;i]) 
                let xFZ syn i       = fix syn Z !?(qs,[0;1;2;i]) 
                let xR  i           = Reset Zero [qs.[i]] 
 
                // Measure syndrome 
                for i in 0..5 do xH i 
                xXs 0 [9;10;11;12] 
                xXs 1 [7;8;11;12] 
                xXs 2 [6;8;10;12] 
                xZs 3 [9;10;11;12] 
                xZs 4 [7;8;11;12] 
                xZs 5 [6;8;10;12] 
 
                for i in 0..5 do xH i 
                for i in 0..5 do xM i 
 
                // Error correct 



C I R C U I T  M O D E  

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

58 

                for syn in 1..7 do 
                    xFX syn (5+syn) 
                    xFZ syn (5+syn) 
 
                // Reset ancilla back to zero 
                for a in 0..5 do xR a 
 
            Gate.Build(nam,fun () -> 
                new Gate( 
                    Qubits  = qs.Length, 
                    Name    = nam, 
                    Help    = "Measure/Fix Syndrome", 
                    Draw    = sprintf Error! Hyperlink reference not valid. 

(qs.Length-1) nam, 
                    Op      = WrapOp op 
            )) 
        (gate qs).Run qs 
 

Example 55: Full syndrome Gate for Steane7 

We will not go through the details here (left for an exercise to the reader ). However, 
the Circuit generated looks like this: 

  

Figure 14: Steane7 Syndrome Circuit 

The left half (through the Measurement boxes) is the syndrome measurement while the 
right half is the application of the “fix” gate 14 times (count the controlled X and Z gates). 

At the very end, the Ancilla are reset from Bits back to |0⟩ Qubits for use the next 
time. 

In the actual Steane7 class, we now can start overriding the abstract members: 

    override s.Prep qs = prep qs 
    override s.Syndrome qs = synd qs 
    override s.Replace(g:Gate) = base.Replace g 
 

Example 56: Steane7 override definitions 



C I R C U I T  M O D E  

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

59 

Strictly speaking, we did not have to override Replace since the default QECC definition 
builds a set of Transverse Gates (which is what we need for Steane). The actual 
definitions of the gates are held in a dictionary: 

    // Default gate dictionary 
    let dic =  
        let dic = Dictionary<Gate,Qubits->unit>() 
        let q   = [ket.Qubits.[0]] 
        dic.Add(!< CNOT ket.Qubits,Transverse cCnt CNOT) 
        dic.Add(!< H q,Transverse cCnt H) 
        dic.Add(!< S q,Transverse cCnt S) 
        dic.Add(!< X q,Transverse cCnt X) 
        dic.Add(!< Y q,Transverse cCnt Y) 
        dic.Add(!< Z q,Transverse cCnt Z) 
        dic.Add(!< I q,Transverse cCnt I) 
        dic.Add(!< M q,Transverse cCnt M) 
        dic 
 

Example 57: Transverse gate dictionary 

The default Replace function is implemented as: 

    default q.Replace(g:Gate) = 
        if dic.ContainsKey g then Some dic.[g] 
        else 
            match g.Op with 
            | BCOp(1,_)->   // Only single binary supported for now 
                let gParent  =  
                    match g.Parent with 
                    | None     ->  

     failwith "QECC: BitCon needs a Parent gate" 
                    | Some g   -> g 
                let T_Parent    = 
                    match q.Replace gParent with 
                    | None     ->  

failwithf "QECC; BitCon missing gate: %s"  
gParent.Name 

                    | Some f   -> f 
                T_BC q.Decode T_Parent |> Some 
            | _    -> None 
 

Example 58: Default Gate replacement function 

QECC also provides two useful functions that will help us write Decode:  

1. Log2Phy which will take a logical wire number and return the physical qubits 
associated with it. 

2. GetMeasured which will take a set of measured physical qubits and return a 

single hex value the represents the code measured (0 − 2𝑛−1) 

We can now write our Decode function: 

    // Compute bit best distance between codes 
    let bestCode measured = 
        let best logical = 



C I R C U I T  M O D E  

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

60 

            let rec dist a b v = 
                if a = 0 && b = 0 then v 
                elif (a &&& 1) ^^^ (b &&& 1) <> 0 then  
                     dist (a>>>1) (b>>>1) (v+1) 
                else dist (a>>>1) (b>>>1) v 
            List.mapi (fun i c -> i,(dist c measured 0)) logical  
            |> List.minBy (fun (i,d) -> d) 
                 
        // Find min distance to a logical 0 code 
        let best0,dist0 = best logical0 
        let best1,dist1 = best logical1 
        if dist0 <= dist1 then Zero,dist0 else One,dist1 

 

    override s.Decode (qs:Qubits) = 
        let measured    = base.GetMeasured qs 
        bestCode measured 
 

Example 59: Decode implementation for Steane7 

What this does is see if the number we measured is closer to a logical 0 or a logical 1 and 
then return a Zero or One accordingly (along with the Hamming distance to that code). 

We now have a complete implementation of a QECC. The one function not mentioned 
that is provided in the QECC class is: Inject(prob). This will inject random X, Y and Z 
gates into the Circuit with the given probability on each wire in the circuit. The current 
version only injects before a Wrapped gate (e.g., all the Transverse versions of a gate). 
This means that errors can be inserted before measurement… but they will be fixed 
classically via the Decode function (hence the need to return the Hamming distance). 

The Circuit returned by Steane7 can be simulated directly (like any other circuit)… 

however, we quickly reach the limits of LIQ𝑈𝑖|⟩. Just for teleport, which is only 3 qubits 
in size… the Steane7 version is now 27 qubits! (3*7 + 6 Ancilla). A better way is clearly 
needed and that brings us to the next section. 

Stabilizers 

Simulating large numbers of  qubits 

ECC circuits are a good example of where our Functional Simulator is 

severely limited. As the number of qubits (𝑛) grows, the memory required 

to store the state of the system grows as 2𝑛. We quickly run out of 
memory to hold the simulation. There is a way around this if we’re willing to limit 
the types of operations that we’ll allow in a circuit. 
 
If we restrict ourselves to operations from the Clifford-Stabilizer framework (see 
references from the Introduction) then the state we need to maintain will grow 

Q 



C I R C U I T  M O D E  

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

61 

linearly with 𝑛 instead of exponentially. The Gates that are allowed for use in 

LIQ𝑈𝑖|⟩ Stabilizers are: 
 

H,CNOT,S,X,Y,Z,I,M,Reset,Restore,CGate X,CGate Z,BC,Wrap  

 
This is by no means a universal set of gates. However, it does include all the gates 
necessary to investigate QECC, so it’s very useful for that purpose. 
 

Another restriction is that Qubit states must be |0⟩ or any state reachable by applying 
the Gates listed above (no teleport with “random” states). In fact, let’s do a teleport of 

the value |1⟩ using Stabilizers. First, we start with the definition of teleport we’ve used 
in all the other examples, but we’ll add a state-flip at the beginning and a measurement 
at the end: 

let tele1 (qs:Qubits) = X qs; teleport qs; M [qs.[2]] 
 

Example 60: Teleport of |1⟩ with final measurement 

This gives us a |1⟩ for the input message (by flipping the 0 Qubit with an X) and then 
measuring the result on Qubit 2 so we can see what happened. Let’s just run the function 
normally: 

    let k       = Ket(3) 
    let qs      = k.Qubits 
    tele1 qs 
    show "tele1 returns: [%d%d] => %d"  

qs.[0].Bit.v qs.[1].Bit.v qs.[2].Bit.v 
 

Example 61: Running the tele1 function 

A typical output would be: 

tele1 returns: [00] => 1 
 

Example 62: tele1 result 

Our message of 1 was teleported from the beginning to the end (as expected). Now, let’s 
compile it into a Circuit and create a Stabilizer instance for it and run it: 

    let tgtC1   = Circuit.Compile tele1 qs 
    let stab    = Stabilizer(tgtC1,k) 
    stab.Run() 
    let _,b0    = stab.[0] 
    let _,b1    = stab.[1] 
    let _,b2    = stab.[2] 
    show "tele1 stabilizer: [%d%d] => %d" b0.v b1.v b2.v 
 

Example 63: Stabilizer simulation of tele1 

We get the same result as before, but now we’ve used a simulator that can handle 
thousands of qubits at one time. One difference is that we have to ask the 



C I R C U I T  M O D E  

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

62 

Stabilizer for the values of the Qubits (stab.[0]) because they are maintained in 
a different simulator with different statistics. For example, the first returned value 
(which we ignored using “_”) is a Boolean that lets us know if the result was random 
or deterministic. 
 
We can also query the Stabilizer simulator for its state at the end of the 
simulation: 
 
    show "=== Final State: " 
    stab.ShowState showInd 0 

 
0:0000.1/=== Final State:  
0:0000.1/ 
0:0000.1/-X.. 
0:0000.1/-.XX 
0:0000.1/-..X 
0:0000.1/---- 
0:0000.1/-Z.. 
0:0000.1/+.Z. 
0:0000.1/-.ZZ 
 

Example 64: Final Stabilizer tableau 

This shows the status of the various generators. We can also ask for a Gaussian 
reduction of the state: 
 
    stab.Gaussian() 
    show "=== After Gaussian: " 
    stab.ShowState showInd 0 

 
0:0000.1/=== After Gaussian:  
0:0000.1/ 
0:0000.1/-X.. 
0:0000.1/+.X. 
0:0000.1/-..X 
0:0000.1/---- 
0:0000.1/-Z.. 
0:0000.1/+.Z. 
0:0000.1/-..Z 
 

Example 65: Gaussian Stabilizer tableau 

Of course, teleport isn’t very interesting (in terms of size)… but if do a Steane7 
code on the teleport circuit and then run it (see the QECC.fsx script for an example), 
we can look at a much more complex final tableau: 
 

0:0000.1/=== Final State:  
0:0000.1/ 
0:0000.1/+.........ZZZZ...XXXX....... 
0:0000.1/+..Z...ZZ..ZZ.ZXZ.Y.Y..X.XX. 
0:0000.1/+..Z..........Y.Z.ZXY..X.XX. 
0:0000.1/+...X....................... 
0:0000.1/+....X...................... 
0:0000.1/+.....X..................... 
0:0000.1/-......X....XX.............. 
0:0000.1/-.......X..X.X.............. 
0:0000.1/-........X.XX............... 
0:0000.1/+.........XXXX.............. 



C I R C U I T  M O D E  

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

63 

0:0000.1/+.Z............ZZ..ZZ.XX..XX 
0:0000.1/+..Z..........Z.Z.Z.ZX.X.X.X 
0:0000.1/+Z...............ZZZZ...XXXX 
0:0000.1/+..Z...Z.Z.Z.ZZ.Y.YXZ..X.XX. 
0:0000.1/-..........X.X.Z............ 
0:0000.1/-..........XX...Z........... 
0:0000.1/+..........XXX...Z.......... 
0:0000.1/-X.X..............X......X.. 
0:0000.1/-XX................X......X. 
0:0000.1/-XXX................X......X 
0:0000.1/-..Z..........Z.Z.Z.Z..X.X.X 
0:0000.1/-.Z............ZZ..ZZ..X..XX 
0:0000.1/-......................X.... 
0:0000.1/-Z...............ZZZZ....XXX 
0:0000.1/-X.XX.X....X......Z......Z.. 
0:0000.1/-XX.XX......X......Z......Z. 
0:0000.1/-XXXXXX......X......Z......Z 
0:0000.1/---------------------------- 
0:0000.1/-................Z.......... 
0:0000.1/+..............Z............ 
0:0000.1/-.............Z............. 
0:0000.1/+Z..Z............ZZZZ....... 
0:0000.1/+.Z..Z.........ZZ..ZZ....... 
0:0000.1/+..Z..Z.......Z.Z.Z.Z....... 
0:0000.1/+......Z.................... 
0:0000.1/-.......Z................... 
0:0000.1/+........Z.................. 
0:0000.1/-.........Z................. 
0:0000.1/-.....................Z..... 
0:0000.1/-....................Z...... 
0:0000.1/-.......................Z... 
0:0000.1/+...............Z........... 
0:0000.1/+.ZZ...ZZ..ZZ.ZZ..ZZ........ 
0:0000.1/+..Z...Z.Z.Z.ZZ.Z.Z.Z....... 
0:0000.1/+Z........ZZZZ...ZZZZ....... 
0:0000.1/+..............ZZZZ......... 
0:0000.1/+.............Z.ZZ.Z........ 
0:0000.1/+.............ZZ.Z..Z....... 
0:0000.1/+.............Z....ZZZ....ZZ 
0:0000.1/+..............Z..Z.Z.Z..Z.Z 
0:0000.1/+...............Z.ZZ...Z.ZZ. 
0:0000.1/+................ZZZZ...ZZZZ 
0:0000.1/+ZZ............ZZZZ......... 
0:0000.1/+Z.Z..........Z.ZZ.Z........ 
0:0000.1/+ZZZ..........ZZ.Z..Z....... 
 

Example 66: QECC teleport Stabilizer tableau 

The code we need to change is fairly simple: 
 
    let s7          = Steane7(tgtC1) 
    let s7C         = s7.Circuit 
    let stab        = Stabilizer(s7c,s7.Ket) 
    stab.Run() 
 

Example 67: Running teleport with QECC under a Stabilzer simulation 

All we did was take the original Circuit, create an instance of Steane7 and then use 
the circuit from the Steane7 instance (and the Ket vector with all the new physical 
Qubits) to create the instance of the Stabilizer simulator. 



C I R C U I T  M O D E  

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

64 

To look at the values, we need to decode the final measurements from physical qubits 
back to logical qubits: 

    let bit0,dist0  = s7.Log2Phys 0 |> s7.Decode 
    let bit1,dist1  = s7.Log2Phys 1 |> s7.Decode 
    let bit2,dist2  = s7.Log2Phys 2 |> s7.Decode 
 

Example 68: Decoding QECC output 

Once more, we have Bits returned as well as their Hamming distance to a legal code. 

The Advanced Topics section (in Basic Operations) has a good example of what the 
circuit looks like with error injection. A typical run of the QECC test may be invoked 

with the following command. Typical output from running teleport of |0⟩ and |1⟩ looks 
like this: 

> Liquid __QECC() 

0:0000.1/LOOP[Zer0]: InjectedXYZ(0,0,0) Fixes=0 (Zero, One,Zero) dist=(0,0,0) 
0:0000.1/LOOP[Zer1]: InjectedXYZ(0,1,0) Fixes=2 ( One,Zero,Zero) dist=(0,0,0) 
0:0000.1/LOOP[Zer2]: InjectedXYZ(0,1,1) Fixes=2 (Zero,Zero,Zero) dist=(0,0,0) 
0:0000.1/LOOP[Zer3]: InjectedXYZ(0,1,1) Fixes=0 (Zero,Zero,Zero) dist=(0,0,1) 
0:0000.1/LOOP[Zer4]: InjectedXYZ(1,1,0) Fixes=3 (Zero, One,Zero) dist=(0,0,0) 
0:0000.1/LOOP[Zer5]: InjectedXYZ(1,0,0) Fixes=2 ( One,Zero,Zero) dist=(0,0,0) 
0:0000.1/LOOP[Zer6]: InjectedXYZ(0,1,0) Fixes=2 (Zero, One,Zero) dist=(0,0,0) 
0:0000.1/LOOP[Zer7]: InjectedXYZ(1,0,0) Fixes=1 ( One,Zero,Zero) dist=(0,0,0) 
0:0000.1/LOOP[Zer8]: InjectedXYZ(1,1,0) Fixes=3 ( One,Zero,Zero) dist=(0,0,0) 
0:0000.1/LOOP[Zer9]: InjectedXYZ(0,1,0) Fixes=1 ( One, One,Zero) dist=(0,0,0) 
 
0:0000.1/LOOP[One0]: InjectedXYZ(0,0,0) Fixes=0 (Zero, One, One) dist=(0,0,0) 
0:0000.1/LOOP[One1]: InjectedXYZ(1,0,0) Fixes=1 (Zero, One, One) dist=(0,0,0) 
0:0000.1/LOOP[One2]: InjectedXYZ(0,0,1) Fixes=1 ( One, One, One) dist=(0,0,0) 
0:0000.1/LOOP[One3]: InjectedXYZ(0,1,1) Fixes=3 (Zero,Zero, One) dist=(0,0,0) 
0:0000.1/LOOP[One4]: InjectedXYZ(0,0,1) Fixes=1 ( One, One, One) dist=(0,0,0) 
0:0000.1/LOOP[One5]: InjectedXYZ(0,0,1) Fixes=1 ( One,Zero, One) dist=(0,0,0) 
0:0000.1/LOOP[One6]: InjectedXYZ(1,0,0) Fixes=1 (Zero,Zero, One) dist=(0,0,0) 
0:0000.1/LOOP[One7]: InjectedXYZ(0,1,0) Fixes=1 (Zero, One, One) dist=(0,0,0) 
0:0000.1/LOOP[One8]: InjectedXYZ(1,0,1) Fixes=0 (Zero,Zero, One) dist=(0,0,1) 
0:0000.1/LOOP[One9]: InjectedXYZ(1,1,0) Fixes=3 (Zero, One, One) dist=(0,0,0) 
 

Example 69: Command line QECC test with Stabilizers 

This shows that Qubit 2 always got the right answer even though we injected errors in 
the form of random X, Y and Z gates. The Fixes= column shows the number of errors 
detected by the error syndrome and were fixed (X or Z flips). The dist= column shows 
the Hamming distance for each measured bit from a good code. The two that aren’t 0 
are because the errors were injected just before measurement and therefore were classical 
and could not be fixed by QECC (but were fixed correctly by the Decode function). 
 



A D V A N C E D  N O I S E  M O D E L S  

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

65 

 



A D V A N C E D  N O I S E  M O D E L S  

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

66 

 

Advanced Noise Models 

Simulating the real world  

eal world noise is much richer than the de-polarizing channel discussed in 
previous chapters. Here we’ll apply a much more sophisticated model to 
represent both unitary and non-unitary noise sources. 
 

The Noise class provides a harness for circuits that will run 
them, inject noise and gather statistics. Noise maybe Unitary (e.g., polarizing) or 
non-Unitary (e.g., a decoherence event).  
 

The NoiseEvents class is used to keep track of summary noise 
statistics for a circuit being analyzed. It stores the number of times a gate was 
executed, how many times noise was applied to a gate and the total number of noise 
events (may be multiple per application). 
 

NoiseModel holds all the information necessary to model 
noise for a gate time. Gate names may have a trailing ‘*’ to allow for wild-carding. 
In addition to execution time for the this particular gate there are separate statistics 
kept for gates that are part of the normal computation and gates that are part of the 
error correction circuitry (e.g., syndrome circuits). Each NoiseModel may have its 
own custom Noise Function which allows the user full flexibility in defining the 
specific characteristics of their noise model.  
 

Detailed statistics stored for each noise event that occurs. 
 

Chapter 

7 

R 
Noise class 

NoiseEvents class 

NoiseModel class 

NoiseStat class 



A D V A N C E D  N O I S E  M O D E L S  

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

67 

Full Example 

he best way to show how to implement a noise model is to work through a 
full example. We will use the one that appears in samples as NoiseAmp.fsx 
(this is also the __NoiseAmp() test built in to LIQ𝑈𝑖|⟩).  Our goal will be to 
simulate a simple circuit over time and watch the effects of various types of 

noise: 
 

Figure 15: Circuit for Noise Analysis 

We will prepare the circuit with a two qubit Ket vector and then apply a Hadamard and 
CNOT in the normal way so that we’re ready to run the idle gates with a noise model. 
The actual noise model setup, looks like this: 

 // Create Idle circuit 
 let circ    = Circuit.Compile (fun (qs:Qubits) -> I >< qs) ket.Qubits 
 
 // Create noise model 
 let mkM (p:float) (g:string) (mx:int) =  

{Noise.DefaultNoise p with gate=g;maxQs=mx} 
 let models      = [ 
     mkM 0.0             "H"         1 
     mkM 0.0             "CNOT"      2 
     mkM probPolar       "I"         1 
 ] 
 let noise           = Noise(circ,ket,models) 

 
Example 70: Create a noise model

This will give us a circuit with one Idle gate (I) in each qubit. We also define noise 
models for each gate type we might use. In this case, we’re only going to run an Idle 
gate, but we can list the probability of noise per unit time for each gate type we’re going 
to use. Gate names may have an asterisk (*) as a wild-card. In fact the entire name can 
be “*” which will apply that noise probability to all gates with the supplied qubit count. 
 
For each of the gates, we chose to use Noise.DefaultNoise which creates a 
NoiseModel that implements depolarizing noise. The function can be replaced by the 
user with a different noise model if desired. The function itself is handed three 
arguments: 

T 



A D V A N C E D  N O I S E  M O D E L S  

 

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

68 

 Time: Amount of time spent in this gate (which may actually cover several 
sequential executions). 

 Duration: Time to run one instance of the gate  (Time/Duration is 
(approximately) the count of gate executions for this call 

 Qubits: Qubits to apply noise to 
 
If you define your own function (f), the easiest thing to do is to call 
“NoiseModel.Default f” which will initialize a NoiseModel that you can then override 
(as shown in Example 70: Create a noise model. 
 
Now that we have a Noise class, we need to set desired options: 
 
        noise.LogGates     <- false     // Show each gate execute? 
        noise.TraceWrap    <- false 
        noise.TraceNoise   <- false 
        noise.DampProb(0)  <- probDamp 
        noise.DampProb(1)  <- probDamp 
 

Example 71: Noise options 

The first three are logging options (you can make things very verbose if desired). The 
last two are where we get to define which qubits we wish to have an Amplitude Damping 
model defined. This will give us both Unitary and non-Unitary effects. DampProb() for a 
given Qubit ID defines the probability of an amplitude damping decoherence event 

happening. If you are modeling a system that has a fastest gate time of 𝑇𝑔 and has a 

decoherence time of 𝑇1, then the probability that you want to use is exp (−𝑇𝑔/𝑇1) 

provided you define the time for all other gates in terms of 𝑇𝑔. The next section gives 

full detail on the specific Amplitude Damping model used in LIQ𝑈𝑖|⟩. 

In the sample file, we do one more preparatory step. We collapse the Ket state vector 
into a single dense vector and remember the vector (so that we can dump out running 
statistics as we go). We’re now ready to run: 

        // Get a handle to the state vector for output 
        let v           = ket.Single() 
 
        dump 0 v 
        for iter in 1..500 do 
            if iter = 1 then noise.Run ket else noise.Run() 
            dump iter v 
 
        noise.Dump(showInd,0,true) 

Example 72: Running the noise model 

The actual run with noise is very simple. The first time we initialize by handing in a Ket 
vector (noise.Run ket) and for continued runs, we just drop the parameter 



A D V A N C E D  N O I S E  M O D E L S  

 

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

69 

(noise.Run()). This allows us to gather statistics across as many runs as we’d like (in this 
case after each pair of Idle gates). 

The dump call (implemented in the sample file) will give us statistics at each of the 500 
time steps we ran for: 

0:0000.0/Iter,qs=00,qs=01,qs=10,qs=11 
0:0000.0/   0,0.50000,0.00000,0.00000,0.50000 
0:0000.0/   1,0.50100,0.00000,0.00000,0.49900 
0:0000.0/   2,0.50200,0.00000,0.00000,0.49800 
0:0000.0/   3,0.50300,0.00000,0.00000,0.49700 
0:0000.0/   4,0.50400,0.00000,0.00000,0.49600 
0:0000.0/   5,0.50500,0.00000,0.00000,0.49500 
0:0000.0/   6,0.50601,0.00000,0.00000,0.49399 
0:0000.0/   7,0.50701,0.00000,0.00000,0.49299 
. . . 

Example 73: Output from noise run 

This is more interesting if plot the results (the output is already in CSV format: 

 

Figure 16: Output from Noise run 

We can see the Unitary amplitude damping (sloped lines), the depolarization (where 

states are flipping between |0⟩ and |1⟩ and decoherence (where states are collapsing to 

|0⟩). We also get a summary table at the end of the run: 

========== Noise models ========= 
   Gate Pattern   Dur G_count G_Apply G_event ECcount ECapply ECevent 



A D V A N C E D  N O I S E  M O D E L S  

 

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

70 

   ------------   --- ------- ------- ------- ------- ------- ------- 
 
              H   1.0       0       0       0       0       0       0 
           CNOT   1.0       0       0       0       0       0       0 
              I   1.0    1000       3       3       0       0       0 
        AmpDamp   1.0       2       2       2       0       0       0 
 
========== Detailed statistics ========= 
      Time    Gate Pattern     Dur Wires        Type Detail 
      ----    ------------     --- -----        ---- ------ 
     24.00         AmpDamp     1.0 0            norm <hard> 
    127.00               I     1.0 0            norm depol_Z 
    222.00         AmpDamp     1.0 1            norm <hard> 
    355.00               I     1.0 0            norm depol_Y 
    470.00               I     1.0 0            norm depol_X 
 

Example 74: Noise final summary 

In the first part we see that there were 1000 executions of the Idle gate (two each time) 
and 2 amplitude damping (decoherence) events. It also shows that there were 3 
applications of de-polarizing noise. We can see the detail in the second table showing 
what time each event happened (and see the events in the graph above). 

Amplitude Damping  

he specific Amplitude Damping channel used (ℰ𝐴𝐷) on a single qubit 𝜌 is a 
CPTP map defined as1: 

ℰ𝐴𝐷(𝜌) = 𝐾1𝜌𝐾1
† + 𝐾2𝜌𝐾2

†
 

Equation 5: Amplitude Damping Channel 

where 

𝐾1 = (
1 0

0 √1 − 𝜌𝐴𝐷
) ,   𝐾2 = (

0 √𝜌𝐴𝐷
0 0

) 

Equation 6: Krauss operators 

are Krauss operators (satisfying 𝐾1
†𝐾1 + 𝐾2

†𝐾2 = 𝕀). The amplitude damping channel 

describes a process in which the state |1⟩ can relax to the state |0⟩ with some probability 

𝜌𝐴𝐷. If the input state is |𝜓𝑖𝑛⟩ = 𝑎|0⟩ + 𝑏|1⟩, where |𝑎|2 + |𝑏|2 = 1, then we will 
observe the output state to be 

                                                                        

1 Many thanks to Aleksander Kubica for this write-up of the LIQ𝑈𝑖|⟩ amplitude damping model. 

T 



A D V A N C E D  N O I S E  M O D E L S  

 

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

71 

|𝜓𝑜𝑢𝑡⟩ = {

𝑎|0⟩ + 𝑏√1 − 𝜌𝐴𝐷|1⟩

√1 − |𝑏2|𝜌𝐴𝐷
, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − |𝑏|2𝜌𝐴𝐷

|0⟩, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 |𝑏|2𝜌𝐴𝐷

 

Equation 7: Output state 

Let us analyze what happens if we apply the amplitude damping channel ℰ𝐴𝐷⨂ℰ𝐴𝐷 to 

an entangled two-qubit state, for example a Bell pair |𝜓𝑖𝑛⟩ =
1

√2
(|00⟩ + |11⟩). One 

can check that the output state is 

|𝜓𝑜𝑢𝑡⟩ =

{
 
 
 
 

 
 
 
 
|00⟩ + (1 − 𝜌𝐴𝐷)|11⟩

√1 + (1 − 𝜌𝐴𝐷)2
, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜌𝐴𝐷 +

1

2
𝜌𝐴𝐷
2

|10⟩, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
1

2
𝜌𝐴𝐷(1 − 𝜌𝐴𝐷)

|01⟩, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
1

2
𝜌𝐴𝐷(1 − 𝜌𝐴𝐷)

|00⟩, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
1

2
𝜌𝐴𝐷
2

 

Equation 8; Two Qubit Amplitude Damping 

Note that we observed the output state |𝜓𝑜𝑢𝑡⟩ = |01⟩, then only the first qubit relaxed; 

similarly for the |10⟩ state. If |𝜓𝑜𝑢𝑡⟩ = |00⟩, then both qubits relaxed. One can notice 

that the entanglement survives (i.e. the output state |𝜓𝑜𝑢𝑡⟩ is not a product state) only if 

no qubit undergoes a relaxation process (and 𝜌𝐴𝐷 ≠ 1). 

Usually, to simulate the effects of the amplitude damping noise on a circuit, we imagine 
performing ideal gates of the circuit followed by the amplitude damping channel. If the 

relaxation time of a qubit is 𝑇1 and the execution time of a gate is 𝑡, then the probability 

𝜌𝐴𝐷 for the qubit to relax while the gate is being applied is 𝜌𝐴𝐷 = 1 − exp (−
𝑡

𝑇1
). 

Noise + QECC 

ne of the more useful applications of the advanced noise modeling capability 
is to apply it to quantum error correction. The system lets you analyze how 
errors in the data sections and syndrome sections of the circuit affect 
correctness.  

O 



A D V A N C E D  N O I S E  M O D E L S  

 

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

72 

The Noise1.fsx file in samples shows how to apply complex noise models to QECC 
(this can also be run directly from LIQ𝑈𝑖|⟩ as __Noise1(depth,iters,prob)). This 
circuit only has one logical qubit and a specified number of Idle gates. The parameters 
to the function are: 

- Depth: How many Idle gates to use in the circuit. 
- Iters: How many runs of the circuit to use for gathering statistics 
- Prob: Probability of an error occurring 

 
A typical call would be: 
 

> Liquid.exe __Noise1(1,500,1.0e-2) 
0:0000.0/=============== Logging to: Liquid.log opened ================ 
0:0000.3/     , 1,1.00e-002, 107, 125,0.86 
0:0000.5/     , 1,1.00e-002, 207, 250,0.83 
0:0000.8/     , 1,1.00e-002, 307, 370,0.83 
0:0001.0/     , 1,1.00e-002, 399, 488,0.82 
0:0001.0/FINAL, 1,1.00e-002, 407, 500,0.81 
0:0001.0/HIST, #,     prob,gate,  ec,good, all,frac 
0:0001.0/HIST, 1,1.00e-002,   0,   0,  85,  85,1.00 
0:0001.0/HIST, 1,1.00e-002,   0,   1, 122, 136,0.90 
0:0001.0/HIST, 1,1.00e-002,   0,   2,  99, 131,0.76 
0:0001.0/HIST, 1,1.00e-002,   0,   3,  41,  63,0.65 
0:0001.0/HIST, 1,1.00e-002,   0,   4,  17,  24,0.71 
0:0001.0/HIST, 1,1.00e-002,   0,   5,   8,  17,0.47 
0:0001.0/HIST, 1,1.00e-002,   0,   6,   4,   7,0.57 
0:0001.0/HIST, 1,1.00e-002,   1,   0,   6,   6,1.00 
0:0001.0/HIST, 1,1.00e-002,   1,   1,   9,  11,0.82 
0:0001.0/HIST, 1,1.00e-002,   1,   2,   7,  10,0.70 
0:0001.0/HIST, 1,1.00e-002,   1,   3,   6,   7,0.86 
0:0001.0/HIST, 1,1.00e-002,   1,   4,   2,   2,1.00 
0:0001.0/HIST, 1,1.00e-002,   2,   6,   1,   1,1.00 
0:0001.0/=============== Logging to: Liquid.log closed ================ 
 

Example 75: Advanced Noise plus QECC 

The statistics at the end (HIST) are: 

- Gate: Number of errors injected in the actual circuit (the 7 physical copies of 
the Idle gate that represents the one logical gate) 

- ec: The number of errors injected into the error correction circuitry. Since these 
are the majority of the gates, this is where most of the errors occur 

- good: Number of time the circuit generated the right answer 
- all: Total number of runs for the circuit 
- frac: Fraction of the runs that were correct 

 
The details of this test can be found in the sample file. However, there are a few new 
techniques that we haven’t seen before that are worth mentioning: 
 
        let prep'           = prep.Reverse() 
        noise.NoNoise      <- ["S7:Prep"] 
        noise.ECgates      <- ["S7:Prep";"S7:Syn"] 
 

Example 76; New noise techniques 



A D V A N C E D  N O I S E  M O D E L S  

 

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

73 

Once the circuit completes running, we execute a reversed version of the prep circuit 
which will convert the 7 physical qubits back to a logical qubit. If we then measure that 
qubit, we can see if it’s in the correct state. The NoNoise property states which circuits 
will not have noise added. We’ve placed the name of the prep circuit here so that we can 
prepare everything perfectly (without nose injection). Likewise, the ECgates property is 
used to tell the Noise class which circuits are the error correction ones (this is how it 
knows the difference between data gates and syndrome gates).

 



H A M I L T O N I A N  M O D E  

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

74 

 

Hamiltonian Mode 

Simulating the physics  

he third simulator in LIQ𝑈𝑖|⟩ (after Universal and Stabilizer) is the 
Hamiltonian simulator. This environment allows you to define circuits that 
represents various types of Hamiltonians and to efficiently simulate them. 
 

We’ve previously mentioned the gates that support Hamiltonians in the section on 
Built-In gates. All of these gates appear in module HamiltonianGates. 
 

The Hamiltonian class is at the base of the simulator, but is 
never used directly. Instead, one of the two derived classes that follow are 
instantiated by the user. 
 

Spin-Glass simulation 

 

The Spin class is used to define Spin-Glass problems to the 
system. The Hamiltonian being simulated is: 
 

𝐻 = Γ(t)∑Δ𝑖𝜎𝑖
𝑥

𝑖

+ Λ(t)(∑ℎ𝑖𝜎𝑖
𝑧

𝑖

+∑𝐽𝑖𝑗𝜎𝑖
𝑧𝜎𝑗

𝑧

𝑖<𝑗 

) 

 
Equation 9: Adiabatic Hamiltonian 

 

Chapter 

8 

T 

Hamiltonian class 

Spin class 



H A M I L T O N I A N  M O D E  

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

75 

We are starting in a ground state that we know in the 𝜎𝑥 direction (Γ = 1, Λ = 0 ) 
and ending in a target state in the 𝜎𝑧 direction (when Γ = 0, Λ = 1) which we’d like 
to discover. This is referred to as an adiabatic evolution since it is expected that if 

we move slowly enough (changing Γ, Λ) we can stay in the ground state of the entire 
system and smoothly move to the solution. The changing of strength over time is 
called the annealing schedule and typically looks like this: 

 
Figure 17: Typical Annealing Schedule 

 
There are two main ways to instantiate the class. The first is the “bottom level” 
version that lets you specify everything: 
 
type Spin( 
    spinTerms : SpinTerm list, 
    numSpins  : int, 
    runMode   : RunMode) 
 

Example 77: Spin constructor (1) 

The constructor arguments are: 

1. spinTerms which are a list of elements that contain: 
a. schedule: 0 based index of an annealing schedule that will be used 
b. op: Operatrion (Gate) to apply. Typically ZR or ZZR  
c. ampl:Amplitude (strength) of this term 

2. numSpins: How many spins are there (qubits) 
3. runMode: Trotterization to use: 

a. Trotter1: First order Trotter term 
b. Trotter1x: Split the transvers (X) field terms to the start and end of the 

Circuit 
c. Trotter2: Second order Trotterization 

 
The second form of the constructor takes care of many of the details for you: 
 
type Spin( 
    hs      : Dictionary<int,float>, 
    Js      : Dictionary<int*int,float>) 
 

Example 78:  Spin Constructor (2) 

Γ 

Λ 

tFinal 



H A M I L T O N I A N  M O D E  

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

76 

The constructor arguments are: 
 

 hs – Create a dictionary for each Qubit that you want to provide a strength 
to in the range (typically) of -1.0 to +1.0. These are the ZR terms. 

 Js – Coupling strength between two Qubits. This is a dictionary of Qubit 
Id pairs and strength. Only Ids where the first is less than the second is 
searched for (i<j) and typical values are -1.0 which is ferromagnetic coupling 
and +1.0 which is anti-ferromagnetic coupling (0.0 = no coupling). These 
are the ZZR terms. 

 
Note that there’s no XR term, since it’s implied automatically and is on annealing 
schedule 0. The ZR and ZZR are terms on automatically placed on schedule 1. 
 
Two built-in static members are available to aid in setting up spin-glass systems. 
Let’s go through the example provided in the samples directory (Ferro.fsx) which 
simulates a ferromagnetic chain. The file shows both static members, but let’s just 
go over the simpler one here: 
 
let tests   = 50                // Tests to run 
let qCnt    = 12                // Qubit count 
let h0      = 1.0               // h0: Left most qubit Z strength 
let hn      = -1.0              // hn: Right most qubit z strength 
let coupling= 1.0               // 1=ferro -1=anti-ferro 0=none 
let sched   = [(100,0.0,1.0)]   // Annealing schedule 
let runonce = true              // Runonce: Virtual measurements 
let decohere= []                // No decoherence model 
        
Spin.Ferro(tests,qCnt,h0,hn,coupling,sched,runonce,decohere) 
 

Example 79: Ferromagnetic script 

 

The arguments are: 

 tests: How many instances to run. 

 qCnt: Total number of qubits to use as spin terms 

 h0: Strength of the h term on Qubit 0. +1 = Force spin up 

 hn: Strength of the h term on the last Qubit. -1 = Force spin down 

 coupling: Strength of the between qubit terms (build a ferromagnetic chain 
by specifying +1.0) 

 sched: At time 0, schedule 0 is always 1.0 (the 𝜎𝑥 term) and all the other 
schedules are at 0.0 . For this reason, we only need to specify the ending 
point for the schedules. Here we’ve specified a final time of 100 where the 

𝜎𝑥 term (schedule 0) becomes 0.0 and the 𝜎𝑧 terms (schedule 1) become 1.0. 

 runonce:  This is a simulation optimization that lets us run a test once and 
then look directly into the state vector (since we’re a simulator) and obtain 
all the probabilities instead of running 100s or 1000s of times and measuring 



H A M I L T O N I A N  M O D E  

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

77 

to get the same result (which we’d have to actually do on a quantum 
computer). 

 decohere: This is an advanced option that allows dechoherence models to 
be plugged in. For this test, we’re using perfect qubits. 

 
What we’ve done is created a twisted chain (one end up; one end down) so when 
we simulate, we get both details for 1 run and a histogram across all runs: 
 

0:0000.0/  1%: ............ [<H>=-6.000 Stdev 0.000] [S_mid=0.000] 
0:0000.0/ 10%: -..........+ [<H>=-5.525 Stdev 0.043] [S_mid=0.009] 
0:0000.0/ 18%: 0..........1 [<H>=-5.242 Stdev 0.049] [S_mid=0.036] 
0:0000.0/ 20%: 0-........+1 [<H>=-5.197 Stdev 0.049] [S_mid=0.048] 
0:0000.0/ 25%: 0--......++1 [<H>=-5.142 Stdev 0.058] [S_mid=0.095] 
0:0000.0/ 26%: 00-......+11 [<H>=-5.142 Stdev 0.061] [S_mid=0.108] 
0:0000.0/ 28%: 00--....++11 [<H>=-5.154 Stdev 0.065] [S_mid=0.139] 
0:0000.0/ 30%: 000-....+111 [<H>=-5.185 Stdev 0.069] [S_mid=0.180] 
0:0000.0/ 32%: 000--..++111 [<H>=-5.234 Stdev 0.070] [S_mid=0.228] 
0:0000.0/ 34%: 0000-..+1111 [<H>=-5.303 Stdev 0.067] [S_mid=0.267] 
0:0000.0/ 81%: 00000..11111 [<H>=-9.031 Stdev 0.060] [S_mid=0.631] 
0:0000.1/!Histogram: 
0:0000.1/!Ferro  6.0% 000000000001 (E=-11.0000) [ones= 1] 
0:0000.1/!Ferro 10.0% 000000000011 (E=-11.0000) [ones= 2] 
0:0000.1/!Ferro  8.0% 000000000111 (E=-11.0000) [ones= 3] 
0:0000.1/!Ferro 12.0% 000000001111 (E=-11.0000) [ones= 4] 
0:0000.1/!Ferro  4.0% 000000011111 (E=-11.0000) [ones= 5] 
0:0000.1/!Ferro 12.0% 000000111111 (E=-11.0000) [ones= 6] 
0:0000.1/!Ferro 30.0% 000001111111 (E=-11.0000) [ones= 7] 
0:0000.1/!Ferro  6.0% 000011111111 (E=-11.0000) [ones= 8] 
0:0000.1/!Ferro  2.0% 000111111111 (E=-11.0000) [ones= 9] 
0:0000.1/!Ferro 10.0% 001111111111 (E=-11.0000) [ones=10] 

Example 80: Output from Ferromagnetic run 

The detailed output shows the probability of each qubit between 0 and 1 (- = 
tending to 0, +=tending to 1 and .= no tendency). The histogram shows each case 
seen, what percentage of the runs fell into that category and the final energy 
(showing we reached the ground state). The test also generated two diagrams. The 
first was Ferro.htm which shows all the pieces (as well as the fact that we used 
RunMode Trotter1X visible from the fact that the RpX gates are both at the 
beginning and end of the Circuit): 
 

 
Figure 18: 12 Qubit ferromagnetic chain 

The second diagram shows the Circuit that was actually run after “Gate Growing” 
was performed: 
 



H A M I L T O N I A N  M O D E  

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

78 

 
Figure 19: 12 Qubit ferromagnetic chain (grown) 

Here you can see that we only had to do 5 matrix multiplies to perform the entire 
circuit (major speed-up). One of the reasons not to grow even further is that the 
circuit changes at every time step (due to the annealing schedule), so spending time 
optimizing beyond a certain point simply doesn’t pay. 
 
The Spin.Test(...) static routine allows arbitrary connections (not just chains) and 
much finer control (including Trotter number). An couple of examples are also 
provided in the Ferro.fsx script. 
 

Fermionic simulation 

The Fermion class is used to define Fermionic problems to the 
system. The Hamiltonian being simulated is (in 2nd quantized form): 
 

𝐻 = ∑ℎ𝑝𝑞𝑎𝑝
†𝑎𝑞 +

1

2
∑ ℎ𝑝𝑞𝑟𝑠 𝑎𝑝

†𝑎𝑞
†𝑎𝑟𝑎𝑠

𝑝<𝑞<𝑟<𝑠𝑝<𝑞

 

 
Equation 10: Fermionic Hamiltonian 

We are simulating the Bohr model of a molecule where we will ignore the motion 
of the nuclei since they are massive and can be viewed as fixed in space in 
comparison to the electrons. The first summation describes single electrons as they 

move (annihilation: 𝑎𝑞 and creation: 𝑎𝑝
†
). The second summation describes the 

interactions between pairs of electrons. These terms lead to the basic gates (Hpp, 
Hpq, Hpqqp, Hpqqr and Hpqrs used internally). For more details, see the reference to 
the various quantum chemistry papers in the introduction.  

Fermion class 



H A M I L T O N I A N  M O D E  

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

79 

 
One item to note is that is that in the two body terms the outer (ps) and inner (qr) 
values must match in parity (spin-up or spin-down) 
 
Fermion is normally accessed via it’s static method: Fermion.Run(dic,data). The 
first parameter is a dictionary of possible arguments (all have defaults) and the 

second is an array of data containing strengths for the ℎ𝑝𝑞 and ℎ𝑝𝑞𝑟𝑠 terms 

(obtained from any conventional molecular chemistry simulator). We’ll describe 
each in detail using the H2.fsx sample script as an example. The first thing we need 
to do is to create a dictionary for all our parameters: 
 
let dic = Dictionary<string,string>()   // Parameters to Fermion 
 
dic.["Test"]   <- "26"    // Test to process in data[] 
dic.["Bits"]   <- "18"    // Bit accuracy 
dic.["Trotter"]<- "32"    // Trotter number 
dic.["Thresh"] <- "-0.6"  // Max threshold to accept as an 
                          // energy answer (with nuclear repulsion) 
dic.["Emin"]   <- "-2.5"  // Min possible energy (w/o nuc repul) 
dic.["Emax"]   <- " 1.5"  // Max possible energy (w/o nuc repul) 
dic.["Ecnt"]   <- "2"     // Electron count 
dic.["SOs"]    <- "4"     // Spin orbitals 
dic.["Preps"]  <- "[1;2]” // Prepared start states (list of lists) 

Example 81: H2 Fermoinic dictionary definition 

Many of these are obvious (if you work in Quantum Chemistry ) but a few are 
non-standard: 

 Thresh is just a cut-off to say that we don’t want any answers with an energy 
higher than this (keep running until we get a good answer). 

 Emin, Emax define the range of our phase estimation (0.0 to 1.0) 

 Ecnt is our electron count (𝐻2 only has 2 electrons). 

 SOs refer to the number of spin orbitals, this is twice the number of orbitals 

(up and down). In the case of 𝐻2 we only have 4 SOs. 

 Preps are the states to start from the full set for 𝐻2 would be 
[1;2];[1;3];[1;4];[3;4] if we wanted to start with 2 electrons in each of 
the legal spin orbital configurations (SOs start at 1). 
 

The data array consists of strings in a specific format that represent a test to run. 
The elements in each string are separated by whitespace and consist of: 

 tst=# The test number of this line (does not have to be the same as the 
index in the array). 

 info=str Any identifying information that you’d like the simulator to output 
for this test (in this case the separation of the nuclei). 

 nuc=# Nuclear repulsion term. This is used to calculate the total energy 
values as opposed to the raw numbers without nuclear repulsion. 



H A M I L T O N I A N  M O D E  

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

80 

 Ehf=# Energy of the Hartree Fock calculation. This comes for free from 
your Quantum Chemistry package and can be used to sanity check the 
simulator results. Note that this term is with nuclear repulsion. 

 i,j=# These are the single electron terms. The i and j refer to orbital IDs 
(starting at 0). 
i,j,k,l=# These are the double electron terms. The i, j, k and l refer to 
orbital IDs (starting at 0). 

 
We give two examples in the samples directory of how to use classical quantum 
chemistry packages to generate the integrals: 
 

PyQuante See http://pyquante.sourceforge.net/ for details on obtaining, installing 

and running the package. A sample input file for generating H2O.dat if 

given in H2O.py. PyQuante is available on Windows. 
Psi4 See http://www.psicode.org/ for details on obtaining, installing and 

running the package. A sample input file for generating H2O.dat is 

given in H2O.inp. In addition, the sub-directory mointegrals 
contains sample code for generating the molecular integrals that are 
placed in a .dat file. Psi4 does not currently run on Windows. 

 
At the bottom of h2.fsx are two examples of running tests (by test number and by 
Trotter number). The chapter on Quantum Chemistry will give many more options 
on types of tests that could be run. 
 
To run a single test, we could just type: “fsi h2.fsx” and get back a large set of 
information. The final, most detailed output is on the lines labeled !CSV: 
 

0:0000.0/!CSV,1.40,32,1, 
-1.851551055908200,-1.137265055908200, 
"P.11010110011111111101",98.7 

Example 82: Solution for H2 molecule 

We had 18 terms that become 96 gates (see details in the log). We then reduced all 
the gates to a single unitary and then solved 18 bits of phase estimation yielding a 
total energy of -1.137265055908200 which was found by measuring a phase of: 
11010110011111111101 using single qubit phase estimation. 
 
If we run a full ensemble (with preps of electrons in different orbitals) and plot the 
results, we get the blue dots in the following figure (energy based on spacing of the 
nuclei): 
 

http://pyquante.sourceforge.net/
http://www.psicode.org/


H A M I L T O N I A N  M O D E  

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

81 

`  
 

Figure 20: Molecular Hydrogen Energy Spectra 

We can also do the equivalent for 𝐻2𝑂: 

 
Figure 21: Water Energy vs. Bond Length and Angle 

Details of more sophisticated use of LIQ𝑈𝑖|⟩ for  Quantum Chemistry may be found 
in the next section. 



H A M I L T O N I A N  M O D E  

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

82 

Quantum Chemistry 

In the previous section, we presented a short introduction to running quantum 
chemistry models. Now we would like to give in-depth details of how to utilize the 
built-in quantum chemistry system that is based on the Fermionic Hamiltonian 
simulator. 
 

The simplest way to invoke the system is to invoke LIQ𝑈𝑖|⟩ 
from the command line with: __Chem(“molecule”). Using an illegal argument will 
provide help: 
 
> liquid __Chem("") 
0:0000.0/=============== Logging to: Liquid.log opened ================ 
0:0000.0/Built-in tests: 
0:0000.0/       tag                 data eCnt sorbs   eMin       eMax 
0:0000.0/        H2       h2_sto3g_4.dat   2   4     -3.142      3.142 
0:0000.0/      HeH+     HeH+_3-21g_8.dat   2   8     -7.142     -0.858 
0:0000.0/        Be      Be_sto6g_10.dat   4  10    -17.142    -10.858 
0:0000.0/       LiH     LiH_sto6g_10.dat   4  10    -12.142     -5.858 
0:0000.0/        HF      hf_sto6g_12.dat  10  12   -108.142   -101.858 
0:0000.0/      BeH2    BeH2_sto6g_14.dat   6  14    -22.142    -15.858 
0:0000.0/       H2O     h2o_sto6g_14.dat  10  14    -88.142    -81.858 
0:0000.0/       NH3     nh3_sto6g_16.dat  10  16    -71.142    -64.858 
0:0000.0/       CH4     ch4_sto6g_18.dat  10  18    -57.142    -50.858 
0:0000.0/       Li2     Li2_sto6g_20.dat   6  20    -20.142    -13.858 
0:0000.0/       HCl     hcl_sto6g_20.dat  18  20   -468.142   -461.858 
0:0000.0/        F2      f2_sto6g_20.dat  18  20   -231.142   -224.858 
0:0000.0/       H2S     h2s_sto6g_22.dat  18  22   -413.142   -406.858 
0:0000.0/ 
0:0000.0/Provide your own .dat file in the samples directory with a tag of: 
0:0000.0/   "fileName:eCnt:sOrbs:eMin:eMax" 
0:0000.0/         fileName - file name in samples directory 
0:0000.0/         eCnt     - electron count 
0:0000.0/         sOrbs    - Spin Orbitals (2x number of orbitals) 
0:0000.0/         eMin     - energy min (in Hartree) for Phase Estimation 
0:0000.0/         eMax     - energy max (in Hartree) for Phase Estimation 

Example 83: Calling the __Chem function 

This shows you all of the built-in molecules that are available. The .dat all live in 
the samples directory. Each molecule has an associated electron count (eCnt), spin 
orbital count (sorbs) and energy window (eMin, eMax). 
 
If we wished to solve for the ground state of water, we could just type: liquid 
__Chem(H2O) (the double quotes are optional here). A large amount of information 
is generated (both at the console and even more in the log file). We will describe the 
output shortly. 
 
You can also prepare your own molecules (details on the .dat file format were 
given in the Fermionic simulation section). In that case, you need to provide the 
ancillary information found at the end of the help output above. For example, to 
run H2O as if you created it yourself, you could type: 
 

__Chem function 



H A M I L T O N I A N  M O D E  

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

83 

 
 

liquid __Chem("h2o_sto6g_14.dat:10:14:-88:-81") 
 

Example 84: Running your own molecule 

This would do the same as the built-in version, but gives the complete syntax for 
substituting your own .dat file. 
 

When you wish to control many more features of the quantum 
chemistry package use the __ChemFull command line function. The arguments to 
the function are: 

 mol: Same argument as for the __Chem function described above. 

 test: The test number in the .dat file that you wish to run. 

 opts: String of all the single character options that you wish to set. There 
are many of these detailed in the following section. 

 trot: The Trotter number that you wish to use. Typically this is around 32. 

 bits: How many bits of accuracy you want in the phase estimation 

 order: This is the Trotter order (currently only 1 or 2). For quantum 
chemistry, there’s really no need to use 2nd order but it’s there for 
comparison purposes. 

 
A typical call would look like: liquid __ChemFull(H2O,0,"",32,28,1) which 
would perform the same function as __Chem(H2O).  

Quantum Chemistry 

Options 

The flexibility of the quantum chemistry package lies in the options that are 
available. All of the options are single characters and will be described in the way 
that they are logically grouped. 
 

When simulating a Hamiltonian the order of the terms may 
greatly influence both the accuracy of the result and the size of the executed circuit 
(whether terms may be nested or redundant gates removed). The term orders 
supported by LIQ𝑈𝑖|⟩ includes: 
 
? Random term ordering while maintain interleaved PQ and PRRQ terms 
I Interleaved PQ and PRRQ terms with lexicographically ordered terms. This is the 

default if not specified (optimal) 
J Jumbled (fully randomized) 

__ChemFull function 

TermOrder ?IJLMP 



H A M I L T O N I A N  M O D E  

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

84 

L Lexicographic order without interleaving 
M Sorted by Magnitude of the terms 
P Partial lexicographic ordering (for prettier display) 

 
There are multiple variants of the PP, PQ, PQQP, PQQR and 

PQRS circuits implemented. Details on the circuits may be found in the quantum 
chemistry papers referenced at the top of this manual. These options let you choose 
among them: 
 
A Ancilla based. Entangle the Jordan-Wigner strings onto one or more ancilla qubits 

(controlled by other options) instead of with each other directly. This allows for 
nesting of Hamiltonian terms. Typically not used for simulation. 

C CNOT based Optimized circuits. These circuits replace the controlled routines 
(used for phase estimation) with standard rotations bracketed by CNOT gates. This 
is to simulate quantum hardware where we don’t have controlled rotations 
available. 

N Nest terms if using the A option. 
O Optimized circuits. These are the term variants that have their Jordan-Wigner 

strings moved to the outside so that they can be collapsed out when terms are in 
lexicographic order. 

W Whitfield circuits. These are the original quantum chemistry circuits as described 
in the Whitfield, Biamonte and Aspuru-Guzik paper. 

 
In some experiments, it’s useful to be able to drop terms to 

see how this affects the result. There are several ways to do this: 
 
Q Drop the PQQP terms completely 
Z Drop a random 20% of all PQRS terms 
p Drop the PP terms completely  
q Drop the PQ terms completely  
u Drop the PRRQ terms completely  
s Drop the PQRS terms completely  
z Scale all the PQRS terms to 80% of their initial value 
 

A large part of the efficiency of the system to do quantum 
chemistry comes from how it reduces circuits to more efficient (large) unitary 
matrices. In the case of quantum chemistry we can be extremely efficient by only 
allowing physically realizable states. For example, even though the Hamiltonian for 

𝐻2𝑂 takes 15 qubits and would a 32768 ×  32768 matrix to represent it, after 

removing non-physically realizable states, this can be reduced to just 441 × 441. 
All of this depends on the parameters we supply to GrowGates: 
 
0 Turn off parity conservation (same number of up and down electrons enter and 

exit the operator (conservation of angular momentum). 
D Turn off enforcing a difference of 0 between the number of up and down electrons. 

This needs to be turned off if we have an odd number of electrons. 

TermType ACOW 

DropTerms QZpqusz 

GrowGates 0DRgh 



H A M I L T O N I A N  M O D E  

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

85 

R Turn off greedy decimation of the array while terms are being built because we 
have redundant gates being removed and may not be unitary until the end. 

g Turn off the entire growth into a single matrix and use the full circuit instead (very, 
Very, VERY slow). This sets single to false. 

h Turn off “half-up” ordering of the qubits. The default is to have all the spin-up 
qubits followed by all the spin-down qubits. This has been found to be a more 
optimal ordering. By turning this off, you return to a natural ordering where the 
qubits (in-order) represent: inner-orbital-up, inner-orbital-down, next-orbital-up, 
next-orbital-down… (fully interleaved). 

 
Parity and Diff refer to optimizations we do if Single is true. When we grow a single 
unitary for the entire circuit we have the option to require parity between the rows and 
columns (we conserve angular momentum) and guarantee that the number of electrons 
we start with are the number we end with. Diff refers to the difference we expect 
between up and down spin counts (don’t specify if you don’t want this). Since we are 
looking for ground states with an even number of electrons we expect the number of 
UP spins – the number of DOWN spins to equal 0. 

There are times when you may want to increase (or decrease 
the accuracy of a computation (independent of the number of bits of the phase 
estimation). These options let you make several choices: 
 
F Integrals coming from classical quantum chemistry packages are optimized for a 

Hartree Fock solution. We can use perturbation theory to make the off-diagonal 
elements more accurate for an FCI solution (which is what the quantum chemistry 
package is doing. This flag tells the system to do a “diagonal fix-up” of the integrals. 

U Use the Hartree-Fock energy (in the .dat file) as well as the nuclear repulsion value 
to compute an energy range for the phase estimate (overriding the range provided 
by the user). 

c The default accuracy for comparison of complex numbers is 1.0 × 10−18. This is 
overkill for many situations (esp. long running computations). The first application 

of the “c” option reduces the accuracy to 1.0 × 10−11. Each “c” after the first 

one will reduce the accuracy by a further √10. 
l There are times when a few runs of the computation may not be enough (usually 

the system does from 10 to 20 depending on the repeatability of the results). By 
specifying this option, the system will run the experiment 200 times (no matter 
what the results). Since compiling the circuits is much more expensive than 
running, this is sometimes a good choice. 

m Multiply the PQRS values by a random perturbation. The random value will be 
between 0.0 and 1.0. It will always use the same seed, so perturbations will be the 
same from run to run. 

~ This is a more sophisticated random perturbation applied to all Rz gates in the 
circuit. This will actually happen as the Trotterization occurs and can be used to 
simulate jitter in actual (physical) rotation angles. The random values range within 

±1.0 × 10−4. 
 

Accuracy FUclm~ 

Output GHSTarw 



H A M I L T O N I A N  M O D E  

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

86 

Many types of output may be generated by the system. The section following this 
one will give detailed examples of what may be computed. Here are the options that 
control them: 
 
G This option will dump the entire circuit for one pass of the molecule into the 

Liquid.log file. 
H This makes it easy to get data for the created Hamiltonian into other applications 

(like Matlab). This file creates (Terms_<datFileName>.txt) which is suitable for 
loading directly into Matlab with arrays for PP, PQ, PQQP, PQQR and PQRS 
matrices. 

S Normally, the log file only contains information on the first 100 terms in the 
molecule. This option places all terms in the log file which can be used for analysis 

outside of LIQ𝑈𝑖|⟩. 
T It is sometimes useful to see what the Term Expectations are, give a state vector. 

This option shows the expectations of each of the term types from the prep vector 

as well as after solving the ground state. Here’s an example from  𝐻2𝑂: 
 

Initial expectation: 
      pp: exp=0.730176 sum=0.590136 
    pqqp: exp=0.227273 sum=0.269279 
      pq: exp=0.014817 sum=0.046850 
    pqqr: exp=0.015315 sum=0.054574 
    pqrs: exp=0.012419 sum=0.039161 
 
Final   expectation: 
      pp: exp=0.723948 sum=0.590136 
    pqqp: exp=0.224795 sum=0.269279 
      pq: exp=0.019911 sum=0.046850 
    pqqr: exp=0.019558 sum=0.054574 
    pqrs: exp=0.011787 sum=0.039161 

Example 85: H2O Term Expectations 

a When dumping a binary Ket vector (see below) it might be interesting to see a 
human readable version. This option will create Liquid.ket_txt in the current 
directory (when dumping a binary version is requested). 

r Read in a previously dumped Ket vector (see w) from the Liquid.ket file and use 
it for the initial (prep) state. 

w Write the resulting Ket vector out to a Liquid.ket file. 
 

There are only a few options that globally affect how the 
system runs: 
 
B Even if a molecule looks too big to run, try to run it anyway. 
X No matter what, exit the system after statistics have been outputted but before 

actually running the molecule. 
f Use temporary files to store the phase estimation matrices. This allows much larger 

molecules to run that could normally fit in memory.. 

Run BXf 



H A M I L T O N I A N  M O D E  

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

87 

Quantum Chemistry 

Output 

When running the system, there is a large amount of output generated (esp. in the 
Liquid.log file). Some of which isn’t immediately obvious. Let’s go through running water 
and seeing what a typical log output looks like. We’ll invoke the system with the command: 
__Chem(H2O). 
 
The first thing you’ll see in the log is a list of all the settings being used to run your molecule: 
 

0:0000.0/Test: __Chem("H2O",0,"",32,28,1): with 14 SOs 
0:0000.0/        Parity = 1 
0:0000.0/          Diff = 0 
0:0000.0/        HalfUp = true 
0:0000.0/        Single = true 
0:0000.0/         Preps = [1;8;2;9;3;10;4;11;5;12] 
0:0000.0/    AlterNoise = 0.0 
0:0000.0/        Redund = false 
0:0000.0/     TermOrder = Interleave 
0:0000.0/      TermType = Optimized 
0:0000.0/        PEtype = default 
0:0000.0/            PP = true 
0:0000.0/            PQ = true 
0:0000.0/          PQQP = true 
0:0000.0/          PQQR = true 
0:0000.0/          PQRS = true 
0:0000.0/      TolLevel = 1E-18 
0:0000.0/          Test = 0 
0:0000.0/       Trotter = 32 
0:0000.0/          Bits = 28 
0:0000.0/         Order = 1 
0:0000.0/      Coalesce = 0 
0:0000.0/       CplxTol = 1.00E-018 
0:0000.0/          File = h2o_sto6g_14.dat 
0:0000.0/           SOs = 14 
0:0000.0/          Ecnt = 10 
0:0000.0/          Emin = -88.141592650 
0:0000.0/          Emax = -81.858407350 
0:0000.0/        Thresh = -79.327433385 

Example 86: H2O log, parameters 

Most of these are settable by the options listed in the previous section as well as 
parameters to the __ChemFull function. One thing that’s interesting to note is that since 
HalfUp is true, you can see that the Preps (where the electrons are initially) fills spin-
orbtials 1-5 (spin-up) and spin-orbitals 9-12 (spin-down) instead of the interleaved 
version which would have filled spin-orbitals 1-10. 

Next, the system will read in the .dat file and give summary statistics: 

0:0000.0/  pp Spin orbital circuits:      14 (      14 terms,  145.219 sumMags) 
0:0000.0/  pq Spin orbital circuits:      14 (      14 terms,   11.529 sumMags) 
0:0000.0/pqqp Spin orbital circuits:      91 (     133 terms,   66.263 sumMags) 
0:0000.0/pqqr Spin orbital circuits:     168 (     238 terms,   13.429 sumMags) 
0:0000.0/pqrs Spin orbital circuits:     147 (     350 terms,   11.406 sumMags) 

Example 87 H2O log, loaded terms 



H A M I L T O N I A N  M O D E  

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

88 

We can see the various term types that were loaded, the initial term count (in the 
parenthesis) and how many actual circuits were generated. The number of circuits will 
always be less than or equal to the number of terms, since multiple terms may be 
collapsed on top of each other (since they describe equivalent things). These circuits are 
then dumped to the log file (truncated at 100 unless you use the option to ask for all of 
them). Here is a sampling from the water log: 

0:0000.0/  pp: -33.023097 H01,01 * A01,01 [00,00] 
0:0000.0/  pp:  -7.719358 H02,02 * A02,02 [01,01] 
0:0000.0/  pp:  -6.383992 H03,03 * A03,03 [02,02] 
0:0000.0/  pp:  -7.012261 H04,04 * A04,04 [03,03] 
0:0000.0/pqqp:   0.957020 H01,02,01,02 * A01,02,02,01 [00,01,00,01] (-pqpq,2) 
0:0000.0/pqqp:   0.791225 H01,03,03,01 * A01,03,03,01 [00,02,02,00] (-pqpq,2) 
0:0000.0/  pq:  -0.567081 H01,02 * A01,02 [00,01] 
0:0000.0/pqqr:   0.021881 H01,03,03,02 * A01,03,03,02 [00,02,02,01] (-pqrq,2) 
0:0000.0/pqqr:   0.032091 H01,04,02,04 * A01,04,04,02 [00,03,01,03] (-pqrq,2) 
0:0000.0/pqrs:  -0.059498 H01,03,07,02 * A01,02,03,07 [00,02,06,01] 

-0.009143   -0.021201    0.030344 
0:0000.0/pqrs:   0.076696 H01,02,04,06 * A01,02,04,06 [00,01,03,05] 

         0.001723    0.020607   -0.022331 

Example 88: H2O log, sample term dump 

Looking at the first line for pp, we see the following information: 

-33.023097:This is the strength of the term after LIQ𝑈𝑖|⟩ has collapsed any equivalent 
terms together 

H01,01: This is the natural ordering that the term was read in (spin-orbital numbers 
starting at 1 

A01,01:  This is the lexicographic ordering that the term became (spin-orbital numbers 
starting at 1. Notice the second pqqr term where they’re different. 

[00,00]: Original orbital numbers (zero based) from the .dat file 
(-pqpq,2): In addition, a line may be followed by information on other terms that were 

collapsed together. In this case (the first pqqp entry shown),  there were two 
other terms with order pqpq that were subtracted off (since flipping the last 
pq causes a sign to flip). 

h1,h2,h3: In the case of pqrs, there are three extra value that represent the h1, h2 and 
h3 values described in the Whitfield, Biamonte and Aspuru-Guzik paper. 
These are used to build the actual circuits. 

 
The next thing that in the output are summary gate statistics for the circuit built: 
 
0:0000.0/Counts: Rot=1.42e+003 Seq=1.54e+004 Par=1.54e+004  

Nest=1.54e+004 RedundBest=1.54e+004 (qubits: 15) 
0:0000.0/Combining 15362 gates... 
0:0000.0/            Hpp,   CTtheta:       14 
0:0000.0/            Hpq,      CNOT:       88 
0:0000.0/            Hpq,       CRz:       28 
0:0000.0/            Hpq,        CZ:       24 
0:0000.0/            Hpq,         H:       56 
0:0000.0/            Hpq,    Ybasis:       28 
0:0000.0/            Hpq,   Ybasis':       28 
0:0000.0/          Hpqqp,      CNOT:      182 
0:0000.0/          Hpqqp,       CRz:      105 
0:0000.0/          Hpqqp,    Ttheta:        1 
0:0000.0/          Hpqqr,      CNOT:     2576 
0:0000.0/          Hpqqr,       CRz:      672 
0:0000.0/          Hpqqr,         H:      672 
0:0000.0/          Hpqqr,    Ybasis:      336 



A D V A N C E D  N O I S E  M O D E L S  

 

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

89 

0:0000.0/          Hpqqr,   Ybasis':      336 
0:0000.0/          Hpqrs,      CNOT:     4414 
0:0000.0/          Hpqrs,       CRz:      616 
0:0000.0/          Hpqrs,        CZ:      258 
0:0000.0/          Hpqrs,         H:     2464 
0:0000.0/          Hpqrs,    Ybasis:     1232 
0:0000.0/          Hpqrs,   Ybasis':     1232 

Example 89: H2O log, gate statistics 

The Counts: line summarizes total numbers of rotations and sequential gates. The 
parallel, nesting and redundant gate removal statistics are the same as the sequential ones 
because we didn’t do any of those operations on the circuit. The system then gives a 
complete dump of where all the 15,362 sequential gates are used. 

At this point, the molecule is grown into a single unitary matrix (which can take a long 
time and then is exponentiated for Trotterization and Phase Estimation. At this point, 
we have a complete optimized version of the circuit that we can execute any number of 
times to obtain the ground state energy. Typically we’ll see from 10 to 20 runs depending 
on how numerically stable the result is. 

As we phase estimate, we see the results for every bit computed: 

0:0000.3/  >> 27: 0=  0,  4 c2=  8.0 100.0%  
0:0000.3/  >> 27: 1=  4,  0 c2=  8.0 100.0% -1.5708 
0:0000.3/  >> 27: 001 = 0.125000 
0:0000.3/  >> 26: 0=  0,  4 c2=  8.0 100.0%  
0:0000.3/  >> 25: 0=  0,  4 c2=  8.0 100.0%  
0:0000.3/  >> 24: 1=  1,  0 c2=  0.5 100.0%  
0:0000.3/  >> 23: 0=  0,  1 c2=  0.5 100.0%  
0:0000.3/  >> 22: 0=  0,  1 c2=  0.5 100.0%  
0:0000.3/  >> 21: 0=  0,  1 c2=  0.5 100.0%  
0:0000.3/  >> 20: 0=  0,  1 c2=  0.5 100.0%  
0:0000.3/  >> 19: 0=  0,  1 c2=  0.5 100.0%  
0:0000.3/  >> 18: 0=  0,  1 c2=  0.5 100.0%  
0:0000.3/  >> 17: 1=  1,  0 c2=  0.5 100.0%  
0:0000.3/  >> 16: 0=  0,  1 c2=  0.5 100.0%  
0:0000.3/  >> 15: 0=  0,  1 c2=  0.5 100.0%  
0:0000.3/  >> 14: 1=  1,  0 c2=  0.5 100.0%  
0:0000.3/  >> 13: 0=  0,  1 c2=  0.5 100.0%  
0:0000.3/  >> 12: 1=  1,  0 c2=  0.5 100.0%  
0:0000.3/  >> 11: 1=  1,  0 c2=  0.5 100.0%  
0:0000.3/  >> 10: 0=  0,  1 c2=  0.5 100.0%  
0:0000.3/  >>  9: 1=  1,  0 c2=  0.5 100.0%  
0:0000.3/  >>  8: 1=  1,  0 c2=  0.5 100.0%  
0:0000.3/  >>  7: 0=  0,  1 c2=  0.5 100.0%  
0:0000.3/  >>  6: 0=  0,  1 c2=  0.5 100.0%  
0:0000.3/  >>  5: 1=  1,  0 c2=  0.5 100.0%  
0:0000.3/  >>  4: 1=  1,  0 c2=  0.5 100.0%  
0:0000.3/  >>  3: 1=  1,  0 c2=  0.5 100.0%  
0:0000.3/  >>  2: 1=  1,  0 c2=  0.5 100.0%  
0:0000.3/  >>  1: 1=  1,  0 c2=  0.5 100.0%  
0:0000.3/  >>  0: 0=  0,  1 c2=  0.5 100.0% 

Example 90: H2O log, Phase Estimation 

The first 3 lines show the computation for the lowest bit. The reason there are 3 lines is 
that we’re doing an arc-tangent calculation to obtain an extra 2 bits of accuracy (see: 

http://arxiv.org/abs/1304.074 on Faster Phase Estimation). After this, the lines show the bit 

number, whether we determined it as a 0 or a 1, the number of times we sampled it as a 1 

http://arxiv.org/abs/1304.074


A D V A N C E D  N O I S E  M O D E L S  

 

 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

90 

and the number of times we sampled it as a 0 and finally c2 is the chi squared value with the 

percentage of time we chose the final answer. 

We now are ready to output the final answer for this run: 

0:0000.3/Result: tst=  0 info=0.9573,104.5000 Trot=  32 Order=1  
Egs=< -84.922750, -75.728698> Phi=3.0643425 prep=1,8,2,9,3,10,4,11,5,12 
bits=0.011111001101101001000000100001 

0:0000.3/!CSV,0.9573,104.5000,32,1, 
-84.922749879453500,-75.728698349136500, 
"P.011111001101101001000000100001",97.3 

0:0000.3/OCC*1.000*0.996*0.987*0.991*0.999 0.013 0.013*1.000* 
0.996*0.987*0.991*0.999 0.013 0.013 

0:0000.3/State   expectation: prep[00003e7c]=0.973195 big[00003e7c]=0.973195 

Example 91: H2O log, final result 

The first line (Result) shows the parameters to the run. Next we have the computed 
ground state (Egs) both without and with nuclear repulsion as well as the Phase 
Estimated (Phi) and a listing of our initial orbitals (prep). Finally, we have the actual bits 
computed during phase estimation. 

The second line is the most useful. It’s in CSV format and by pulling all of these out of 
the log file, you get a nice summary of all the runs done. The fields in order are: 

0.9573: This is from the .dat file part of the info field showing the hydrogen bond 
length. 

104.5000: This is also from the info field showing the bond angle. 
32: Trotter Number used 
1: Trotter Order 
-84.9227: Non-nuclear ground state energy 
-75.7287: Ground state energy with nuclear repulsion 
“P.011: Phase estimation bits 
97.3: Overlap of the prep state with the final ground state found 
 

The next line shows occupancies in the final ground state of the initial prep state and the 
last line shows the prep state expectation (with the hex bits representing the filled 
orbitals). The big value is which state entry has the biggest overlap with the ground state. 
When prep and big aren’t the same bits, it says you’re prep state isn’t the best place to 
get to the ground state from. 

 

 

 

 



 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

91 

 



 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

92 

 

Built-in Samples 

Playing with the executable  

IQ𝑈𝑖|⟩ contains a number of built-in samples to allow the user to play with 

the system and to see application areas that LIQ𝑈𝑖|⟩ has been applied to 
(this is only a small sampling). Several of these have been described in earlier 

sections where their source code is available in the samples directory. This chapter 
documents the complete list as well as any options that are available. 
 

This sample takes no parameters and starts an entanglement 
test with 16 qubits and grows as far as it’s allowed (up to 33 qubits). 
 

See the sections relating to this function in the Quantum 
Chemistry sections. The simplest example would be: __Chem(H2). For a list of 
available molecules, type: __Chem(“”).  

 
See the sections relating to this function in the Quantum 

Chemistry sections. This is the detailed call that allows for setting of many 
parameters: __ChemFull(“molecule”,test,”opts”,trot,bits,order). There is an 
entire section of this manual just devoted to the opts (Quantum Chemistry Options) 
. 
 

Correct tests if the simulator is working correctly. It takes no 
arguments and simply tests Teleport on different qubits from a larger state vector 
and will flag if anything unexpected happens. It runs the tests in Code, Circuit and 
Grown modes to try all variations. 
 

Call __Entangle1 with the number of qubits you want to 
entangle (typically 10 through 22). This system will give you detailed statistics on 
how long it takes to do the various operations. 
 

Chapter 

9 

L 
__Big ent 

__Chem chemistry 

 

__ChemFull chemistry 

__Correct test 

__Entangle1 ent 

__Entangle2 ent 



 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

93 

This does the same test as __Entangle1, but compiles the circuit to show the 
difference in timings when using optimized code.   
See the Creating a script section for more details. 

This sample takes no parameters but runs 100 entanglement 
tests on 16 qubits to show the statistics on the bits measured. The should be all 1 
or all 0 (each time) and in the end, approximately half should be 1s and half 0s. 
 

Shows the system computing entanglement entropy in two 
sample different cases. The circuits are output as .htm files and the entropy for each 
qubit at the end is given. 
 

Validates that LAPACK is installed correctly and uses zgeev 

to compute a Wilkinson test. There are a few cases where LIQ𝑈𝑖|⟩ may use 
LAPACK for ancillary statistics and this test validates that the functions are 
available. 
 

Simply creates drawings of an Einstein-Podolsky-Rosen 
circuit (a Hadamard and a CNOT) to show simple a circuit drawing. 
 

Performs the simulation of a ferromagnetic chain using a first 
quantized Hamiltonian. There are two arguments. Set the first to true if you want 
to see all the variations of the chain (Isolated, Ferro, Anti-Ferro, Freeze Up, Freeze 
Down, Freeze Up/Down). If the first argument is false, then only the last example 
will run (the most interesting one). The second argument is true if you only want 
to run each test once, otherwise set it to false. 
 

There are many ways to implement a joint CNOT gate for 
braiding operations with joint measurement and parity control gates. This sample 
tests several implementation with various input combinations and shows the results. 
This sample is only provided to show some of the types of research that we do with 

LIQ𝑈𝑖|⟩. 
 

Documented in the section Noise + QECC  For technical 
details on amplitude damping, refer to the Amplitude Damping section. 
 

See the Full Example in Advanced Noise Models. 
 

Full details may be found in the section on Stabilizers. 
 

Benchmarks the QFT algorithm used inside of Shor. The CSV 
lines are the benchmark results (the first one explains what all the fields are). The 
Quantum Fourier Transform is run in each of Code, Circuit and Optimized modes 
to show the difference in performance. All three show time in seconds and memory 
used in megabytes. 

__Entangles ent 

__EntEnt entropy 

__EIGS math 

__EPR circ 

__Ferro hamiltonian 

__JointCNOT braid 

__Noise1 qecc 

__NoiseAmp qecc 

__QECC qecc 

__QFTbench math 



 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

94 

 
This is an example of the Quantum Linear Algebra algorithm 

by Harrow, Hassidim and Lloyd (http://arxiv.org/abs/0811.3171). The output 
includes the circuits used (created in the files QLSA0.htm (.tex) and QLSA9.htm 
(.tex)). If you take the CSV entries in the output and plot them, you will see a graph 
like the following:  

 
 

Figure 22: Output from QLSA sample 

This is an example of the Quantum Associative memory 

algorithm by Ventura and Martinez (http://arxiv.org/abs/quant-ph/9807053 ). The 
output shows storing a number of key/value pairs (each is a 4 bit hex single digit): 

 
0x04:  6.3%  
0x1c:  6.3%  
0x27:  6.3%  
0x39:  6.3%  
0x47:  6.3%  
0x5e:  6.3%  
0x68:  6.3%  
0x7c:  6.3%  
0x8b:  6.3%  
0x9b:  6.3%  
0xab:  6.3%  
0xbd:  6.3%  
0xcd:  6.3%  
0xd4:  6.3%  
0xec:  6.3%  
0xfb:  6.3% 

Example 92: QuAM: Storing key value pairs 

Looking inside the state vector, we can see that the circuit was able to store all the 
items with equal probability. Now we do a Grover search for the item with key 6: 

Grover[ 0]: 0x68:  7.7% 
Grover[ 1]: 0x68: 12.4% 

__QLSA linalg 

__QuAM memory 

http://arxiv.org/abs/0811.3171
http://arxiv.org/abs/quant-ph/9807053


 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

95 

Grover[ 2]: 0x68: 16.9% 
Grover[ 3]: 0x68: 19.2% 
Grover[ 4]: 0x68: 18.2% 
Grover[ 5]: 0x68: 14.5% 
Grover[ 6]: 0x68:  9.6% 
Grover[ 7]: 0x68:  5.5% 
Grover[ 8]: 0x68:  2.9% 
Grover[ 9]: 0xec:  3.7% 
Grover[10]: 0xec:  3.8% 
Grover[11]: 0x68:  3.2% 
Grover[12]: 0x68:  6.0% 
Grover[13]: 0x68: 10.3% 
Grover[14]: 0x68: 15.1% 
Grover[15]: 0x68: 18.6% 
Grover[16]: 0x68: 19.1% 

Example 93: QuAM: Searching for a key 

We can see how Grover cycles through the optimal probability of finding the 
desired key/value pair. 
 

This is an example of the Quantum PageRank algorithm by 

Paparo and Martin-Delgado (http://arxiv.org/abs/1112.2079 ). The argument provided to 
the function must be one of: 

tiny: 2 Node graph 
tree: 7 Node tree graph 
graph: 7 Node web graph (from the paper) 
<path>: Path to file that contains a specified web graph 

 
If you’re running from the samples directory, a command line using <path> would look 
like: 

..\bin\Liquid.exe __QWalk(Web_4.graph) 
 

The samples directory contains web graphs at sizes 4-9 (which are powers of 2, 
representing web graphs with from 16-512 vertices). You can compare the classical page 
range (PRank) and the quantum page rank (QRank) at the end of the output.  

This is an example of solving Ramsey numbers on the D-Wave 

machine (http://arxiv.org/abs/1201.1842  ). See the paper for details. The example also 
outputs the circuits in Ramsey33_*.htm (.tex) files. 

This is an example of solving a spin-glass problem with a first 
quantized Hamiltonian. Circuits are drawn in SG*.htm (.tex). The couplings used are (1 
based): 

1,5,1; 1,6,1; 1,7,-1; 1,8,1; 2,5,1; 2,6,-1; 2,7,1; 2,8,-1; 
3,5,-1; 3,6,1; 3,7,-1; 3,8,1; 4,5,1; 4,6,1; 4,7,-1; 4,8,-1; 
9,13,-1; 9,14,-1; 9,15,-1; 9,16,-1; 10,13,1; 10,14,1; 10,15,1; 
10,16,1; 11,13,1; 11,14,1; 11,15,-1; 11,16,-1; 12,13,-1; 
12,14,1; 12,15,-1; 12,16,-1; 1,9,-1; 2,10,1; 3,11,1; 4,12,-1; 

Example 94: Spin Glass couplings 

__QWalk page rank 

__Ramsey33 Ham 

__SG Ham 

__Shor factor 

http://arxiv.org/abs/1112.2079
http://arxiv.org/abs/1201.1842


 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

96 

The Shor algorithm example takes two parameters. The first is the number to factor and 
the second is whether to optimize the circuit (true=optimize). See the discussion in 
Creating a script.  

This is just a call to the LIQ𝑈𝑖|⟩ printf equivalent. Pass it a string 
with surrounding double quotes and it will echo back. This is a simple way to test that 
the runtime is working correctly. 

This a validation that the Steane7 CSS code has been 
implemented correctly. It will run through one single qubit error on each of the data 
qubits using X, Y and Z errors to validate that they will all be fixed. 

Implementation of the classic Teleport algorithm. See the 
discussion in Creating a script. 

Solves the traveling salesman problem. The argument is the 
number of cities (5 to 8). A typical final result (for 5 cities) is: 

Histogram: 
TSP 20.0% 1001100101 (E=-10.0379) [ones= 5] 
TSP 60.0% 1010001110 (E=-10.0618) [ones= 5] 
TSP 10.0% 1010100011 (E=-10.0092) [ones= 5] 
TSP 10.0% 1100001101 (E=-10.0573) [ones= 5] 

Example 95: TSP optimizatoin result 

If we plug in the edges for 1010001110 that are dumped (0 is the leftmost bit), we get: 

Edge[0] = sea to lax is  961 miles 
Edge[2] = sea to ord is 1725 miles 
Edge[6] = lax to dfw is 1239 miles 
Edge[7] = jfk to ord is  742 miles 
Edge[8] = jfk to dfw is 1396 miles 

Example 96: TSP Final Route 

So the discovered route is:  SEA -> LAX -> DFW -> JFK -> ORD -> SEA. 

This is a placeholder to show how to add user functions to the 
simulator.   See the chapter on Serious Coding for complete information. 

__show demo 

__Steane7 QECC 

__Teleport basic 

__TSP Hamiltonian 

__UserSample basic 



 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

97 

 

Index 

! 

!! · 38 
!< · 39 

: 

: Molecular Hydrogen · 81 

> 

>!< · 38 
>< · 38 

A 

Accuracy · 85 
AddControl · 44 
Adiabatic · 74 
Adjoint · 37 
Advanced Noise Models · 66 
Advanced Topics · 25 
Amplitude Damping · 70 
Annealing Schedule · 75 
Apply · 51 
architecture · 8 
attribute · 17 

B 

Basic Operation · 15 
BCOp · 44 
Big · 92 
Bit · 11 
Bit Control · 36 
BitCon · 52 
Bits · 34 
braiding circuits · 37 

Built-in Gates · 35 
Built-in Samples · 92 

C 

Chem · 82, 92 
ChemFull · 83, 92 
Chemistry Options · 83 
Chemistry Output · 87 
Circuit · 13 
circuit drawing · 23 
Circuit Manipulation · 51 
Circuit mode · 8 
Circuits · 33 
Command Line Syntax · 16 
Compilation · 30 
Concepts · 11 
control · 48 
Control Control gate · 37 
Control gate · 37 
Correct · 92 
Creating a script · 17 
ctrl · 48 
Custom Gates · 40 

D 

DampProb · 68 
Data Types · 11 
Decode · 59 
DefaultNoise · 67 
Draw · 46 
DropTerms · 84 
Dump · 21, 52 

E 

EIGS · 93 
Empty · 52 
Entangle1 · 18, 92 
Entangle2 · 21, 92 



 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

98 

Entangles · 93 
EntEnt · 93 
EPR · 93 
Execution · 15 
Ext · 51 
Extending · 40 

F 

F# functions · 13 
factor · 24 
Factoring · 24 
fault tolerance · 54 
faults · 54 
Fermion · 78, 79 
Fermionic simulation · 78 
Ferro · 93 
ferromagnetic · 76 
FindIDs · 52 
Fold · 52 
Function mode · 8 

G 

gate · 47 
Gate · 13 
Gate and Qubit Operators · 38 
Gate constructor · 40 
GateCount · 52 
Gates · 34 
go · 48 
Grow · 52 
GrowGates · 84 
growing gates · 22 
GrowPars · 53 

H 

Hamiltonian · 7 
Hamiltonian Mode · 74 
HamiltonianGates · 37 

J 

Joint Measurement · 37 
JointCNOT · 93 

K 

Ket · 12 
Kets and Qubits · 32 

L 

Label · 36 
Language Integrated · 13 
LIQUi|⟩ · 7 
liquid-news · 10 
LiquidTikZ.tex · 47 
logical qubits · 27 
LQD · 17 
lstick · 47 

M 

Main.fs · 30 
Majorana Fermions · 37 
Manipulating Circuits · 25 
Measure · 42 
Measurement · 36 
meter · 48 
Modify · 43 
Morph · 49 
multigate · 48 

N 

Native · 36 
Native Debug · 36 
Noise + QECC · 70, 71 
Noise1 · 72, 93 
NoiseAmp · 67, 93 
NoiseEvents · 66 
NoiseModel · 66 
NoiseStat · 66 
Normal · 41 

O 

Operations · 13 
Optimization · 51 
Output · 85 



 

 

 

Copyright © 2015 by Microsoft Corporation. All Rights Reserved. 
 

99 

P 

Par · 51 
Parity Control · 37 
Physical Modeling · 7 
physics · 74 
prepares · 55 
project · 30 
Psi4 · 80 
PyQuante · 80 

Q 

QECC · 26, 54, 55, 93 
QFTbench · 93 
QLSA · 94 
qswap · 48 
QuAM · 94 
Quantum Architectures and Computation 

group · 10 
Quantum Chemistry · 79 
Quantum Chemistry package · 80 
Quantum Error Correction Codes · 7, 26, 54 
quantum operation · 7 
Qubit · 11 
QWalk · 95 
qwx · 48 

R 

Ramsey33 · 95 
real world noise · 66 
References · 9 
Render · 52 
RenderHT · 23 
Rendering · 46 
Reset · 36, 43 
Restore · 36 
Run · 52, 86 
runMode · 75 
running · 92 

S 

Script mode · 8 

Seq · 51 
Serious Coding · 30 
SG · 95 
Shor · 95 
Shor’s · 23 
show · 16, 96 
showInd · 21 
showLogInd · 21 
Spin · 74, 75 
Spin.Ferro · 76 
Spin-Glass · 74 
spinTerms · 75 
Stabilizer Modeling · 7 
Stabilizers · 27, 60 
Steane7 · 55, 58, 96 
syndrome · 58 

T 

T_BC · 55 
tableau · 62 
targ · 48 
Teleport · 21, 25, 52, 96 
TermOrder · 83 
TermType · 84 
Test mode · 8 
Transverse · 55 
Trotter · 80 
TSP · 96 

U 

Universal Modeling · 7 
UserSample · 96 

V 

Visual Studio · 30 

W 

Water Energy · 81 
Wrap · 52 
WrapOp · 45 

 


	Table of Contents
	List of Figures
	List of Examples
	Equations
	Introduction
	Suggested References
	Obtaining the Software

	Concepts and Data Types
	Bit binary values used inside the simulator.
	Qubit quantum value that represents an entity that may be measured as a Bit.
	Ket Complete state of a quantum system
	Gate Represents an operator
	Operations Represents the operation of a gate on a state
	Circuit Represents a list of operations on gates.

	Basic Operation
	Execution Starting the simulator
	Creating a script
	Advanced Topics

	Serious Coding
	Data Types
	Kets and Qubits States and the parts
	Circuits Compiling functions to circuits
	Bits Measured values
	Gates Fundamental elements

	Built-in Gates
	Gate and Qubit Operators
	>< Apply operator to qubits
	>!< Apply operator to qubits with argument
	!! Build a qubit list
	!< Get Gate


	Extending the Simulator
	Custom Gates
	Normal Basic kind of Gate
	Measure Measurement of a qubit
	Reset Turn a bit into a qubit
	Modify change a parent gate
	BCOp Bit Controlled operation
	WrapOp create a meta-gate

	Rendering
	gate draw a gate on the circuit
	lstick draw text on the circuit
	multigate draw a multiline gate
	control draw a circle
	qwx draw a vertical line
	ctrl draw a circle and a vertical line
	targ draw a mod 2 addition symbol on a wire
	qswap draw cross on a wire
	meter draw an meter
	go positions the drawing cursor
	Morph re-write instructions


	Circuit Manipulation
	Seq Sequence of Circuits
	Par Parallel set of Circuits
	Apply do a standard gate operation
	Ext extends the function of a Gate
	BitCon represents binary control gates
	Wrap meta gate that wraps a list of other gates
	Empty dummy Circuit
	QECC: Quantum Error Correction Codes
	Transverse implements a default QECC version of another gate
	T_BC Transverse version of Binary Control

	Stabilizers

	Advanced Noise Models
	Noise class
	NoiseEvents class
	NoiseModel class
	NoiseStat class
	Full Example
	Amplitude Damping
	Noise + QECC

	Hamiltonian Mode
	Hamiltonian class
	Spin-Glass simulation
	Spin class

	Fermionic simulation
	Fermion class

	Quantum Chemistry
	__Chem function
	__ChemFull function

	Quantum Chemistry Options
	TermOrder ?IJLMP
	TermType ACOW
	DropTerms QZpqusz
	GrowGates 0DRgh
	Accuracy FUclm~
	Output GHSTarw
	Run BXf

	Quantum Chemistry Output

	Built-in Samples
	__Big ent
	__Chem chemistry
	__ChemFull chemistry
	__Correct test
	__Entangle1 ent
	__Entangle2 ent
	__Entangles ent
	__EntEnt entropy
	__EIGS math
	__EPR circ
	__Ferro hamiltonian
	__JointCNOT braid
	__Noise1 qecc
	__NoiseAmp qecc
	__QECC qecc
	__QFTbench math
	__QLSA linalg
	__QuAM memory
	__QWalk page rank
	__Ramsey33 Ham
	__SG Ham
	__Shor factor
	__show demo
	__Steane7 QECC
	__Teleport basic
	__TSP Hamiltonian
	__UserSample basic

	Index

